Architectural & Historical Evaluation

Wellman Hall

UNIVERSITY of CALIFORNIA

PAGE & TURNBULL
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Building History</td>
<td>3</td>
</tr>
<tr>
<td>Period of Significance</td>
<td>3</td>
</tr>
<tr>
<td>Significance</td>
<td>4</td>
</tr>
<tr>
<td>Building Description</td>
<td>5</td>
</tr>
<tr>
<td>Exterior Description</td>
<td>5</td>
</tr>
<tr>
<td>Site</td>
<td>5</td>
</tr>
<tr>
<td>Exterior Elevations</td>
<td>7</td>
</tr>
<tr>
<td>Significance</td>
<td>7</td>
</tr>
<tr>
<td>Exterior Elements</td>
<td>8</td>
</tr>
<tr>
<td>Interior Description</td>
<td>11</td>
</tr>
<tr>
<td>Spatial Sequence</td>
<td>11</td>
</tr>
<tr>
<td>Floor-By-Floor Description</td>
<td>12</td>
</tr>
<tr>
<td>Elements and Materials</td>
<td>17</td>
</tr>
<tr>
<td>Changes</td>
<td>20</td>
</tr>
<tr>
<td>Areas Where Additional Study Is Required</td>
<td>21</td>
</tr>
<tr>
<td>Recommendations</td>
<td>22</td>
</tr>
<tr>
<td>Appendices</td>
<td>25</td>
</tr>
<tr>
<td>Figures & Photographs</td>
<td>26</td>
</tr>
<tr>
<td>Floor Plans With Significance Ratings</td>
<td>40</td>
</tr>
</tbody>
</table>
INTRODUCTION

This study was prepared for the Physical and Environmental Planning Office in conjunction with the planning for the anticipated seismic upgrade project for Wellman Hall. The purpose of the report is to provide basic information about the history and significance of the building and to document its primary physical elements and characteristics and evaluate their architectural and historical role.

The report is based on brief interior and exterior surveys of the building, with limited informal information from building users. The survey and evaluation are based on the original construction drawings and the working drawings for the 1967 renovation, along with reduced-size current drawings provided by the campus. Historical information about the building comes from research and interviews conducted by Steven Finacom, planning analyst with the Physical and Environmental Planning Office.

This report classifies exterior elevations, interior spaces, elements and materials of the building in four categories according to their historical significance and the treatment they should receive if the seismic upgrade is to comply with the Secretary's Standards. The four levels are:

VERY SIGNIFICANT Exemplifies original design, materials and historical associations which are unusual and particular to the building and its period of significance. Highly important to the historical significance of the building. Should not be destroyed or damaged.

SIGNIFICANT Includes original design, materials and historical associations which are good examples of the values which distinguish the building and its connection with the period of significance. Important to the significance of the building. Should not be changed unless unavoidable for overriding code or programmatic reasons; changes should be compatible with the original design.

CONTRIBUTING Includes original or period design, materials and historical associations which contribute to the building and its connection with history. Although not highly unusual, part of a group which adds to the significance of the building. Should be retained where possible; changes should be compatible with the original design.

NON-CONTRIBUTING Not original, or changed so much that it no longer conveys its original character. Does not contribute to the historic integrity of the building. May be changed at will.
BUILDING HISTORY

Wellman Hall is a prominent part of John Galen Howard’s design for the campus and is an excellent example of the fine buildings he designed as university architect. Originally the Agriculture Hall, it continues to house the Entomology Department, one of its original occupants; the Department of Landscape Architecture was also located in the building for many years. Completed in 1912 at a cost of $267,000, Wellman Hall is the oldest of the three buildings in the Agriculture Complex; Hilgard Hall, also designed by John Galen Howard, was completed in 1918, and Giannini Hall, a similar design by William C. Hays, was built in 1930.

Wellman Hall at first housed agriculture, which had included the study of entomology as early as 1875, when Eugene W. Hilgard did research on phylloxera and the codling moth. The University appointed its first entomologist, Charles W. Woodworth, in 1891. In 1913, Thomas Forsyth Hunt, dean of the College of Agriculture, established the Division of Landscape Gardening and Floriculture, which remained in Wellman Hall as it evolved into the Department of Landscape Architecture. It remained in Wellman until the construction of Wurster Hall, where it moved to become part of the College of Environmental Design.

The Department of Landscape Architecture had a drafting room in Room 210. The Entomology Library, originally located in Room 220, moved to that room when Landscape Architecture moved out of the building. It has since moved to the library in the Valley Life Sciences Building. The Entomology Museum began in Room 214 in 1948, expanding later into Room 216 before moving to its current location in the building. The museum is named for Prof. Essig, the most prominent member of the entomology faculty and long-time department chair, who retired in the 1960s, having been a faculty member since the 1930s. In the 1960s, the Entomology Department obtained a grant from the National Science Foundation which helped pay for a renovation designed to increase the space available for offices, laboratories and the Entomology Museum. Room 302 was notable from the 1930s to the 1960s because it was the headquarters for the department’s systematicists, who collect, identify and classify insects. According to faculty members, Berkeley trained more systematicists than any other institution in North America.

PERIOD OF SIGNIFICANCE

The period of significance for Wellman Hall is 1912 to 1930. It begins with the construction of the building and ends with the construction of Giannini Hall. Part of the significance of Wellman Hall comes from its role as a part of John Galen Howard’s design for the campus, which was fully realized only when the
Agricultural Complex was completed with the erection of Giannini Hall. In terms of the architecture of Wellman Hall itself, the period of significance is limited to the original construction; no significant additions or alterations have been discovered in the research for this report.

SIGNIFICANCE

Wellman Hall is listed on the National Register of Historic Places as part of a multiple resources listing for the University of California campus. The National Register nomination attributes the significance of Wellman Hall to its association with agricultural education and its design and construction. The building also is significant for its association with John Galen Howard, one of the foremost California architects of the 20th Century.
BUILDING DESCRIPTION

EXTERIOR DESCRIPTION

SITE

Wellman Hall is located near the west gate of the campus on a slight rise, perpendicular to the east-west axis of the gate. It is the center building of a three-building ensemble designed to form a courtyard on the north side. The other two buildings; Hilgard Hall and Giannini Hall, form the west and east sides of the courtyard, respectively. At present the courtyard is filled in with temporary classrooms. There is a narrow slot of space on the east and west sides between Wellman and the flanking buildings. (See Figure 1, Appendices.)

Although an axial stair on the south side of Wellman leading up to the central door to the Museum Corridor was planned, it appears never to have been built. Early photos show a wood boardwalk on grade in this location, but no record was found of an actual site built stairway. (See Figure 2 and Photograph 2.)

On the south side of the building, there are beds of ivy and shrubs at the wall, with four Eugenia trees. Beyond the beds is a lawn which extends down the hill south to the road. There is an asphalt walk which leads around the south side of the building, connecting the three entrances on that elevation with roads and walkways to the east and west. The ivy and shrub beds extend around the east and west sides of the building; the remaining space between the ends of Wellman and the walls of Giannini and Hilgard halls is occupied by paved driveways. The planting beds extend around the north side of the building, except where a concrete ramp leads to the north entrance on the first floors. Beyond the planting beds, the remainder of the nearby portion of the Wellman Courtyard is paved; the temporary buildings occupy most of the courtyard. Around the edges of the courtyard, near Hilgard and Giannini, there are landscaped areas and pollarded trees.

EXTERIOR ELEVATIONS

Wellman Hall is a rectangular building with three levels of windows and a projecting half-drum of full height centered on the south side. The exterior of Wellman Hall is in the Classical Italian Renaissance style, with a base, mid section and cornice. The primary material for the exterior of the building is granite, with copper used for the soffits, roof monitors and at the head of some of the windows. The roof material is red clay tile.
A slightly projecting rough-pointed base is interrupted by the first floor windows in the main portion of the building and is solid in the projecting drum portion. The mid section at the main body of the building contains two levels of windows in a field of fine-pointed stone with quoins of rough-pointed stone at the corners and in vertical bands separating the entrance bays from the window fields. The mid level of the drum is defined by the sills of the upper windows, whereas the mid level of the main body of the building has the roof soffit as its upper limit. This subtle change in scale adds a dynamic interest to the building which is highlighted by its situation at the top of a small rise. The elevations are all rigidly symmetrical with the south elevation being the primary entrance elevation.

The south elevation contains the projecting drum of what was historically the auditorium. The drum is divided by two major horizontal bands; the lower band defines the base at the main body of the building and the upper band is at the same level as the third story window sills at the main body of the building. Centered in the base of the drum is an arched doorway which defines the center of the building and the center axis of the three-building ensemble. The door surround is an oversized arched projection of rough-pointed stone continuing into quoins interrupting the base band of the drum. The mid section of the drum is a field of finely-pointed stone with six relatively small square windows set at an equal distance around the base at either side of the door. The upper portion of the drum contains a continuous band of 13 windows with a projected sill continuous around the drum. Immediately flanking the drum in the main body of the south elevation are entrances composed of double doors with transoms and tall Florentine arched windows above. These entrances interrupt the sill band of the drum and are set at mid level to the windows at either side. Outside of the entries are bays three windows high by three windows wide which define the main body of the building.

The east and west elevations are identical. They are compositions of three levels of five windows. This arrangement reflects the spatial layout of the interior, with the center window set representing the corridor, while the flanking windows represent the spaces at either side of the double-loaded corridor. The center window in the five-window set is set at a wider spacing on the first floor, with a pronounced surround on the second floor and is a two window set with a center column on the third floor. There is an opening in the roof at the deck at the fourth floor on this centerline.

The north elevation is a flat facade consisting of a center bay of eight window openings flanked on either side by bays of windows set between vertical bands of rusticated stone. All of the window openings on the north elevation are sets of
double windows, with stone mullions on the second floor and wood mullions elsewhere. The windows in the end bays and on the second floor have granite columns in front of the mullions. The center zone of windows on the third floor has a copper sheet-metal facing continuing from the cornice down onto the head of the windows.

The roof is hipped with the intersection of the conical drum roof connecting at a T in the center of the building. The entire ridge line has a continuous monitor of copper and wire glass. The monitors are composed of a sloping glazed section over vertical vents with copper screen and tilting wood sash window vents at the interior.

SIGNIFICANCE

The exteriors of the building, including the roof, are rated VERY SIGNIFICANT, with the exception of the concrete ramp at the north first floor door and the concrete and steel air intake louver at the south west corner which were added in the 1960s and are rated NON-CONTRIBUTING.
EXTERIOR ELEMENTS

Windows

The exterior windows at the first floor are single lite wood sash which pivot on a horizontal axis at the center. Each sash is approximately four feet square, with clear glazing (except at toilet rooms, where there is translucent glass). The second floor windows on the main body of the building are predominantly wood double hung windows with a single lite in both the upper and lower sash. The lower sash is approximately square whereas the upper sash is slightly wider than tall. Typically these windows are Mulled pairs on the north elevation and single windows on the other elevations. In locations where there is a granite column at the center mullion of a mullled pair, the column is located free of the wood window mullion by about four inches, creating a sense of depth and shadow at the facade. The rotunda has wood sash awning windows at the ground level which are approximately four feet wide by five feet tall. These windows pivot in the center as the first floor windows do. The upper windows of the rotunda are wood double-hung windows approximately four feet wide by eight feet tall. Both sashes are single lite, with the lower sash larger than the upper sash by a proportion of 3-to-2.

Exterior Doors

There are four sets of exterior doors to Wellman Hall, one set of double doors on the center axis of the half-drum, a set of double doors on either side of the half-drum at the main body of the building on the south elevation and a single door to the first floor on the north side of the building. The exterior doors on the south elevation are clear-glazed twin-leaf units with stained oak stiles and rails, apparently original. There is an arched glazed transom with a single lite over the doors into the rotunda. Each leaf of the pair is 3-foot 10-inches by 8-foot 6-inches tall. Door hardware includes brass kick plates, a brass threshold and an exterior brass thumb latch with pulls which appear to be original. The other pairs of doors on the south elevation are similar but narrower; they do not have arched transoms. The doors on the south elevation are VERY SIGNIFICANT because their detailing and materials exemplify the original design values of the building. The existing door on the north elevation is glazed wood construction, with a steel frame and. It is not original and is NON-CONTRIBUTING.

Granite facing

The exterior wall facing is granite. The coursing and texture of the stone complement the massing of the building and the composition of its elevations to
create a slightly Mannerist variant on the Classical style, reminiscent of the work of the French architects Boulée and Ledoux. The granite is tooled in three primary textures: bush-hammered, lightly striated and smooth. The bush-hammered texture is used at the base and the quoins, the striated texture is used on horizontal bands and around the perimeter of quoin blocks and the smooth texture occupies the field wall surface onto which other textures are imposed to articulate the architectural composition of the elevations.

The granite is generally in very good condition. Some exfoliation or spalling of the stone occurs near grade. It appears this may be caused by splashing of rain, irrigation systems, or rising damp.

Because the granite is a fine material and conveys important characteristics of the design and imagery of the building exterior, it is rated VERY SIGNIFICANT.

Copper Facing at Eave, Soffit and Gutters

The eaves of the building are integrated visually with the reveal which accommodates the built-in gutters. Starting immediately above the top cornice molding of the granite walls, this assembly begins in a soffit with deep coffers. A single rosette fills each coffer. On the exterior side, there is a cornice molding paralleling the height of the soffit and gutter. The edge of the cornice extends slightly more than four feet from the face of the building wall. The entire assembly is faced in sheet copper. Over the windows in the center zone of the north elevation, this copper surface extends down to the window head in place of the stone facing used on other window bays. This accentuates the free-standing visual effect of the stone pilasters between the window bays. These copper elements appear to be original or at least quite old; they have a uniform greenish black patina. These elements are VERY SIGNIFICANT because of their critical role in the composition of the exterior elevations.

Tile Roofing

The building has red clay Roman tiles. This system consists of a field of uniform rectangular flat tiles laid in a grid with each course overlapping the course below. Narrow ridged tiles cover the joints between the flat tiles, making the roof waterproof. This system was used on Classical buildings, and is particularly suited to Wellman Hall because it can accommodate the geometry of the rotunda, where the width of the flat tiles decreases from the eave to the ridge, allowing the lines of ridged cover tiles to radiate evenly from the center of the half drum at the peak to the perimeter at the eaves. The tile system includes a number of special shapes for
the radiating field on the rotunda and roof conditions such as the openings at the
decks on the east and west ends. The tiles do not appear to be extruded or molded
from machines; they may be hand-made. From the ground, the tiles appear to be in
good condition; they are VERY SIGNIFICANT because they are a highly visible part of
the Classical vocabulary chosen by John Galen Howard for the building.
INTERIOR DESCRIPTION

SPATIAL SEQUENCE

The original layout of all four floors of the building followed the same simple scheme. The building had a central double-loaded corridor located along the center of the main rectangular building mass, with stair halls at roughly its third points. There were three main entrances to the front (south elevation) of the building. A central entry at the base of the half-drum projection opened into a crescent-shaped passage called the Museum Corridor. On the flat south walls flanking the projecting portion of the building were two entries leading into what were known as the East and West Vestibules. These were landings in the stairwells, half way between the first and second floors. The ends of the crescent-shaped center corridor also opened into these vestibules. The first floor had an entrance on the north elevation. An exterior stair led from this door to grade.

Large open laboratory and study spaces occupied most of the north side in the first, second and third floors, with smaller office spaces filling the ends of the building. A projecting semicircular auditorium occupied the center of the building on the south, with tiers of seating rising in amphitheater form in the half-drum volume. The crescent-shaped passage occupied the space below the upper seating tiers on the outer edge of the half drum. This passage was lined with display cases and was used as a museum. The second floor corridor had two doors opening into the semicircular auditorium at its lowest level, while the third floor had two opening onto the highest seating tier. The fourth floor, concealed within the roof at the exterior elevations, housed darkrooms, storage and offices, with the corridor offset toward the south and running only from the east stairwell to the west stairwell.

The original spatial and circulation scheme of the building has not changed. The original stairs were replaced in the 1960s to introduce an elevator. The auditorium has been removed and converted into the Entomology Museum. It has a floor plate slightly below the second floor, a mezzanine, and a floor plate at the third level. There is a circular opening in the center connecting all three levels. Along the north wall at the third floor level there are three small offices.
FLOOR-BY-FLOOR DESCRIPTION

FIRST FLOOR

The first floor occupies the entire footprint of the building with the exception of the outer ring of the half-drum, which is unexcavated. Laboratories, offices, toilet rooms, mechanical rooms and circulation occupy the floor. The center of the half-drum zone on the south side of the building is a large mechanical room. The laboratories and offices have 12-inch-square composition tile flooring, painted plaster (original) and gypsum board walls (remodeling projects) with suspended acoustical tile "T-bar" (remodeling projects) ceilings. (For typical laboratory on this floor, which is representative of all floors, see Photograph 11.) There is a mixture of one- and two-panel glazed wood doors (original). The toilet rooms have either the original terrazzo and marble floor (women's) or remodeled ceramic tile (men's). Both toilet rooms have the original marble stall partitions, although both have had some modifications for handicapped accessibility. Most of the walls in the women's toilet room are the original marble, whereas the original marble has been replaced in the men's toilet room with ceramic tile walls everywhere except in the toilet stalls. The corridor walls and common interior walls to the offices and laboratories have much of the original wood trim and glazing, although much of it is obscured by storage cabinets. This trim basically consists of a grid of 4-inch fir moldings delineating doors, transoms, fixed windows and plaster wall panels. There is a picture rail at some of the offices. The typical base is a 6-inch high cement base with 4-inch wood trim above.

The corridor has the same flooring as the other spaces, with the original plaster walls and non-original suspended "T-bar" ceilings. There is considerable original or period wood cabinetry in the corridor, along with newer steel cabinets. All lighting on this floor is fluorescent, either recessed fixtures at "T-bar" ceilings or surface-mounted.

SIGNIFICANCE

The corridor has not changed in its basic characteristics, although the ceiling has been modified with installation of a suspended "T-bar" system. Because the design and materials retain most of their original integrity, this space is significant. The women's and men's toilet rooms retain most of their original elements, making them very significant records of the original design of the building. Offices and laboratories which have not been modified extensively, including Rooms 101-103 and 114, are significant. The remaining offices and laboratories are contributing because they retain many original elements and generally still
ARCHITECTURAL & HISTORICAL EVALUATION

convey the characteristics which contribute to the significance of the building. The stair halls, elevator and exterior ramp are NON-CONTRIBUTING because they retain no original features or materials.

SECOND FLOOR

The layout of the second floor is similar to that of the first floor, except that the zone incorporating the half-drum is part of the programmatic area. The center of the drum is the lowest level of the Entomology Museum; a door near the center of the corridor provides access to this space. A small steel stair just inside the door to the space leads down to the lowest level of the museum, which is slightly lower than the rest of the second floor, and up to the mezzanine level of the museum, which is between the second and third floors of the building. The original Museum Corridor is mostly intact; located at grade level, it is accessible through the center exterior door on the south elevation and though a door at the entry landing level of each stair hall. The space is now used for graduate students' offices; a series of partial-height walls divide the outer zone into seven spaces corresponding to the window locations. According to entomology faculty interviewed by the Physical and Environmental Planning staff for this report, the museum corridor was subdivided well before the major renovation of the building in the 1960s, and provided faculty office space for the Department of Landscape Architecture when it was in the building. The remainder of the rooms on the second floor are office and laboratory spaces typical of the building.

Typical flooring is 12-inch composition tile. Original walls are flat plaster and remodeled walls are gypsum board. Original ceilings are flat plaster, with suspended "T-bar" ceilings used extensively to conceal new mechanical, plumbing and electrical systems. At the corridor, the walls have transoms with obscure glass in wood frames which are integrated with the picture rail of the room trim scheme. The newer "T-bar" ceiling in the corridor are held back from the transoms, but extend lower than them in the center of the corridor. (See Photograph 6.) As on other floors, the typical original base is cement with a wood cap; there is a crown molding in many rooms. At newer gypsum board walls, the trim is rectangular wood about 2-1/2 inches wide and the base is vinyl.

Heating and ventilation are provided by grilles in the "T-bar" ceilings. Lighting is by recessed fluorescent fixtures in the "T-bar" ceiling. There are numerous surface electrical conduits in addition to those concealed in the walls and ceilings. The corridor has wood fire hose cabinets with glazed doors and ceiling-mounted exit signs. In the Entomology Museum, materials are similar to the ones used in

13
remodeling projects on the rest of the floor. The ceilings are finished in rough-textured sprayed-on plaster.

SIGNIFICANCE

As on the first floor, the corridor is significant because it is largely intact and contains materials and design elements (such as the transoms) which contribute to the character of the building. One room, 212, is largely in its original configuration and is also significant, while the other rooms on the floor are contributing because they retain some, but not all, of their original layout, materials and detailing. The stairs and the Entomology Museum are non-contributing because they retain little or no original materials and design elements.

THIRD FLOOR

The overall layout of the third floor is identical to that of the second floor, although the arrangement of partitions among the individual rooms is different. The most notable difference between the two floors is that more of the original spaces of the third floor are intact and the remodeled Entomology Museum has its main level on this floor.

The most significant room on the third floor is Room 306, an original laboratory classroom which is still largely in its original condition. It has battleship linoleum flooring, original plaster walls with cement base, and original wood trim. There are six rows of fixed laboratory tables. The built-in cabinets on the south side of the room are original or period, while the one on the southwest corner is newer. The original plans show this room as including what is now Room 308. They also show that Rooms 314, 314A, 314B, 310, 310A and 310B were originally all one room, and that Rooms 315 and 317 were originally a single space.

The corridor of the third floor is similar to that on the second floor. The offices and laboratories are also similar. Just west of the west stair, there is a janitor's closet. It has a scored concrete floor and a slop sink which appears to be original. The Entomology Museum has two doors which lead to the main corridor on the third floor. Along the corridor wall, it has three offices with glazed partitions similar to the original transoms in the corridors. The offices have suspended "T-bar" ceilings. The remainder of the room is a single open space, with an opening in the floor at the centerpoint of the half-drum mass (See Photograph 8). The museum has 12-inch-square composition floor tile, moldings and doors similar to the original ones, and rough-textured sprayed-on ceiling finish. Round flush-mounted fluorescent ceiling fixtures four feet in diameter provide lighting. Heating and ventilation are provided
by concealed ducts with wall diffusers; there is almost no surface-mounted electrical conduit on this level of the Entomology Museum.

SIGNIFICANCE

Because they are largely intact and still convey their original design values, the corridor and Rooms 301-303, 305, 318, 319 and the janitor's closet are significant. The stairs, elevator and Entomology Museum are non-contributing because they contain almost no original materials or design elements. Room 306 is very significant because it contains many materials and elements which are original. The remainder of the rooms on the third floor are contributing because they contain a sizable number of original materials and elements.

FOURTH FLOOR

The fourth floor, originally devoted to storage, darkrooms and specialized laboratories, is different from the lower floors in its layout and importance. The corridor is offset to the south of its location on the levels below, and it extends only between the two stair halls. The remaining area of the floor was originally partitioned slightly irregularly and has since been subdivided somewhat haphazardly, creating a warren of small rooms.

The most prominent feature of the fourth floor is the roof monitor, which originally provided light to large laboratory spaces, the corridor and service spaces. It is still visible from the rooms on the north side of the building, although it has been altered with the construction of new interior windows and cloth shades (See Photograph 10). The monitor is visible from the corridor only where one of the infill ceiling panels is missing (See Photograph 9). There was originally a horizontal daylight in the corridor ceiling, providing natural light from the roof monitor.

The fourth floor contains a wide variety of offices, laboratories, storage spaces, mechanical and service spaces, and one classroom. Room 410, a classroom, Room 402, a laboratory, and the mechanical room at the east end of the building, are the only rooms which are still in their original configuration, although the corridor has changed only slightly. Many rooms on the fourth floor have sloping ceilings where the roof encroaches on them near the exterior walls. There are two exterior decks, located at voids in the roof plane at the center of the east and west ends of the building.
The fourth floor spaces appear to be the result of a series of remodeling projects. Many of these were executed before the 1960s remodeling of the building, some were included in that project, some have occurred since then. Flooring materials include battleship linoleum (corridor), terrazzo (Rooms 402-4 and 414-D) and 12-inch composition tile (most other rooms). Walls are generally plaster (original) or gypsum board (remodeled partitions). Ceiling finishes include acoustic tile on plaster (Rooms 406, 406B, 410, 412 and 412A), suspended "T-bar" (corridor), gypsum board (east end of corridor), plaster with sprayed-on texture (409A) and flat plaster (most other rooms). Heating and ventilation are supplied from diffusers, with the ductwork concealed in some rooms and exposed in others. There is a great deal of exposed piping, electrical conduit and other building systems on the fourth floor.

SIGNIFICANCE

Because it is intact and still conveys the presence of the roof monitor, Room 410 is significant. The decks on the east and west ends of the building have changed little and also are significant because they exemplify the high degree of articulation of the original roof design. The corridor and Rooms 402 and 403 are still intact enough to be contributing spaces. The remainder of the rooms on the fourth floor have changed so much that they are non-contributing. It should be noted that elements in these rooms may be more significant than the overall spaces themselves.
ELEMENTS AND MATERIALS

Doors

The building has original glazed panel wood doors, most with a dividing rail between an upper and lower obscure glass pane. Although the original drawings show the doors as having only one large obscure glass pane, it is likely that this was a design modification during construction. Some original doors were a single wood panel. The original doors are VERY SIGNIFICANT because they are generally in good condition and are representative of the contemporary design and materials which make the building significant.

Trim

The standard original base is called out on the design drawings as a six-inch cement base with a three-inch wood cap. The wood has a light stain; and is similar to the wood used for the doors, windows and original or period cabinetry. The window and door trim, picture rail and crown moldings are similar. The original window bays were apparently recessed slightly from the main interior wall surface, with a border in the standard wood trim. Some trim, such as that in the Entomology Museum, is newer but similar in appearance to the original trim. The original trim is SIGNIFICANT throughout, and VERY SIGNIFICANT where it is associated with a door or window with that rating.

Newer partitions have vinyl base in many cases. This material is NON-CONTRIBUTING.

Flooring

Original or period flooring materials are scored concrete (found in the janitor’s closets), terrazzo (fourth floor spaces) and battleship linoleum (various floors). Most of the flooring is 12-in-square composition tile, which is not original and varies in color from room to room. There is a limited amount of carpeting as well. The original or period flooring materials are SIGNIFICANT, while the carpet and composition tile are NON-CONTRIBUTING.

Windows

Windows for the second and third floor are for the most part wood double hung windows with a single pane in each sash. On the first floor there are wood single-lite windows which pivot on a horizontal axis. Glazing is clear except at toilet
rooms. Some windows on the east side were observed to have a reflective mirror surface on the glass. It could not be determined if this surface was an applied film or a type of glazing. The windows are VERY SIGNIFICANT because they play an important role in the historic integrity of the exterior and interior of the building. The highly reflective appearance is inappropriate to the building historically.

Walls

The original interior partition walls are plaster, apparently on metal lath supported by black iron framing. The 1966 remodeling drawings indicate the new partitions were thincoat plaster on gypsum board on metal framing. Transoms above and next to the doors in the corridors were a primary design feature of the building. The original drawings do not indicate opening transoms although some of the transoms are operable now. It is likely that this was a modification made when the building was originally constructed. The original walls are SIGNIFICANT, while the newer partitions are NON-CONTRIBUTING; the transoms are VERY SIGNIFICANT.

Hardware

The original door hardware appears to be a brass latch set with a plate of about two-by-eight inches, with a brass knob and a separate lock. Newer hardware varies, most of it is brushed chrome finish, while some is satin brass. Most new hardware has knobs and, like the original hardware, it does not appear to meet current accessibility requirements. The original hardware is SIGNIFICANT, while the newer pieces are NON-CONTRIBUTING.

Electrical Fixtures

Fluorescent fixtures, mostly recessed at remodeled ceilings, provide lighting throughout the building. There is a great deal of surface-mounted electrical conduit, most commonly at laboratory spaces which have not been remodeled extensively.

Cabinetry

There is a wide variety of original or period wood cabinetry in the building. It is generally clear or light-stained wood, similar in appearance to the doors, windows and trim. The detailing is relatively simple, but characteristics such as panel-construction doors give it a very different appearance from that of more recent items. These elements generally do not appear to be permanently attached to the building, and building users say they have been moved over the years. Nevertheless,
the wood cabinetry should be considered part of the building, and not furniture with only a coincidental and temporary association with the structure. As a group, the cabinetry is significant, although depending on the individual item and location, it could be very significant or contributing.

Mechanical Systems

The building originally had steam radiators and forced air heating system serving most spaces with both types of heat. This was removed, apparently in the major renovation during the 1960s. The existing system provides heat and ventilation from a central plant in the original mechanical room on the south side of the center of the building on the first floor. Supply and return ducts connect to the upper floors in the original chases and a new chase on the south side of the corridor. Distribution on each floor is primarily in the ceiling. Most supply and return grilles are in the ceiling. There are fan rooms, apparently for exhaust fans, on the fourth floor. The original mechanical equipment was removed during the renovation; the existing equipment and system are non-contributing.
CHANGES

The record of drawings available for this report does not pinpoint when all the changes from conditions shown in the original design drawings were made. A major remodeling project is delineated in a set of drawings from 1966 by Ratcliffe Slama Cadwalader Architects. That project included demolition of the original auditorium in the half-drum at the center of the south side of the building and construction of the Entomology Museum in its place. The original stairs were replaced (See Photograph 7) to introduce an elevator. Various room partitions were demolished and added, and suspended “T-bar” ceilings were installed throughout most of the first to third floors. The original mechanical system was replaced.

The original exterior doors and the doors into the entry vestibules from what was the Museum Corridor remain. Walls and rated doors were added in the 1960s as part of the stair remodeling and elevator work, so that the corridors on each floor now have a separation from the stairways. The exterior stair to grade from the first floor door on the north elevation has been replaced by a ramp to make the building accessible to wheelchairs. Corridors are basically the same in form as the original design, although the ceilings have been altered with the addition of dropped ceilings of acoustic tile and recessed fluorescent lighting.

Subtractive

The following spaces, systems and elements have been removed:

- Auditorium, including stepped floor, all finishes, electrical and mechanical systems
- Stairs, including treads, risers, landings, railings, finishes in stair halls
- Original mechanical systems, including air intake, main fan, steam heating coil, ductwork and diffusers, steam piping and radiators
- Exterior stairs at north entry
- Ceiling and daylight at fourth floor corridor

Additive

The following spaces, systems and elements have been added:

- Various interior partitions (mostly in the 1960s, but some may date throughout the building’s life)
- Stairs
- Elevator
- Three-level Entomology Museum
AREAS WHERE ADDITIONAL STUDY IS REQUIRED

More information is needed to document the age and history of the cabinets. Such research would be a valuable tool to building users and the campus in deciding what to do with cabinets as uses and needs change in the building. Once the existing cabinets are better researched, their ongoing disposition should be documented for future use.
RECOMMENDATIONS

SITE

The Wellman Courtyard to the north of the building should be restored. This will presumably wait until adequate space can be found to replace the temporary buildings in the courtyard. A study of the programmatic needs of Wellman, Hilgard and Giannini should be undertaken, with consideration of the types of uses best suited to those buildings and the additional space needed for the academic programs in the buildings. If additional space is needed nearby, the obvious way to accommodate it while restoring the grouping architecturally would be to construct new facilities below a restored courtyard. This should be the only approach considered if parking is desired; surface parking cannot be made compatible with the historic design or architectural quality of the three buildings and the courtyard.

If the courtyard is restored, the north entrance to Wellman Hall, including the wheelchair ramp, should be redesigned for greater compatibility with the historic architecture of the building.

SPACES

The original circulation diagram, and the corridor spaces and elements, should be retained. Because the current layout includes two means of egress, it accommodates the exiting required by building codes for a range of uses. Changes such as converting a floor or a portion of a floor to open offices or laboratories which occupy the full floor plate should be avoided.

Original spaces, most of which are rated SIGNIFICANT, generally should not be reconfigured. Room 306, a well-preserved laboratory classroom, should be retained in its existing state as much as possible within the requirements for its educational use. In an interview conducted for this report by the campus Physical and Environmental Planning staff, Prof. Howell Daly said Room 306 serves poorly as a classroom because the tables are so high that professors cannot see students behind them. This shortcoming should be analyzed along with the historically significant components in the room so that the solution does not include avoidable loss of significant elements.
ELEMENTS

Generally, elements should be preserved as suggested by their ratings in this report. Specific elements are discussed below where issues which complicate their preservation are known.

Doors and Transoms

Many original doors and transoms remain in the building. They make an important contribution to the historic integrity and the architectural quality of the building. The doors, most of which are glazed, and the transoms cannot comply with requirements for a fire-rated corridor. Remodeling projects often replace existing doors with new fire-rated ones and fill in transoms to meet these requirements. Because these elements are historically significant, they should not be removed without a full study and consideration of alternative ways of satisfying code requirements.

Roof Monitor

The roof monitor is still intact on the exterior, but in many interior spaces it is no longer visible. The reason for this removal is unknown, but uncontrolled glare and heat gain may have played a part. Research and product development in daylighting and solar control since the 1960s makes it possible to restore the interior laylights in all spaces below the roof monitor without causing glare or overheating of spaces. A design should be worked out for this feature so that it can be included in the next remodeling project for fourth floor spaces.

Accommodation of Partition Changes

Over the years, there have been many changes to the partitions in Wellman Hall. The functional benefits of these changes should be weighed against the cost and loss of historic integrity which result from continual readjustment of room layouts. A master plan for the building can identify rooms which retain their original layout (generally, those rated SIGNIFICANT or VERY SIGNIFICANT) and guide future space planning so that users do not find themselves in rooms which cannot accommodate partition changes they need as time goes by. In addition, the master plan should include a design, or at least design guidelines, for reversible partitions to provide flexibility in the use of original large rooms without causing avoidable destruction of historic materials and elements.
Future Accommodation of Laboratory Systems

Laboratory uses in historic buildings frequently raise difficult questions about how to accommodate programmatic needs without curtailing, patching, and reconfiguring the building until its original design is unrecognizable. A master plan for accommodating laboratory changes in Wellman Hall would make this task easier. Compromises will inevitably be made, but the most beneficial ones can be reached by taking a long view of the functional changes desired and the priorities for preservation. One requirement which is already a problem is fume hood ventilation. Exterior vent stacks would be problematic no matter where they are located; promising avenues appear to be incorporating them in the roof monitor, adding concrete flues like the original ones on the north side of the roof and concealing vents as much as possible in the decks on the east and west ends of the roof.

Firesprinklers

There are no firesprinklers in the building. A code study could identify the historically-inappropriate code upgrade requirements, such as replacement of original doors and infill of transoms, which might be avoided by providing firesprinklers. Such a study would also analyze the potential benefits available under the State Fire Marshal’s policies for laboratories. Firesprinklers would also provide an added measure of protection for the users and contents of the building.
Figures & Photographs
FIGURE 1. Perspective by John Galen Howard showing Wellman (center) and Hilgard and Giannini Halls from the southeast; University House is visible to the right.
FIGURE 2. South elevation of Wellman Hall; rendering by John Galen Howard. Note the axial stairs to the central entry; they were never built.
PHOTOGRAPH 1. Wellman Hall from the southwest, before the construction of Hilgard and Giannini Halls.
PHOTOGRAPH 2. South elevation, apparently before the construction of Giannini and Hilgard Halls. Note the board walkway.
PHOTOGRAPH 3. North elevation, before construction of Hilgard and Giannini Halls and Wellman Courtyard.
PHOTOGRAPH 4. Interior view, circa 1913. Room is on north side of building.
Note that floor surface appears to be scored concrete.
Photograph 5. Current view from southwest, showing Hilgard, Wellman and Giannini Halls.
PHOTOGRAPH 6. Second floor corridor. Suspended "T-bar" ceiling is at right; it is held back from the wall in front of transoms, preserving their original appearance. The ceiling does alter the spatial character of the corridor.
PHOTOGRAPH 7. Stairway, installed during renovation of the
building in the 1960s. Design and materials do not contribute to integrity.
PHOTOGRAPH 8. Room 311, remodeled to accommodate the Entomology Museum. Round well is the opening to the lower levels of the museum.
PHOTOGRAPH 9. Fourth floor corridor. Where ceiling panel has been removed, light from the roof monitor is visible.
PHOTOGRAPH 10. View of roof monitor in fourth floor room. Note that new lower glazing layer blocks ventilation original roof monitor provided through operable clerestory windows.
PHOTOGRAPH 11: Typical current laboratory, on first floor. Note that installation of suspended "T-bar" ceilings on this floor blocks the view of the top of the windows.
SIGNIFICANCE RATINGs

The plans on the following pages show the historic significance ratings in this report for the spaces in the building. These ratings are explained in the Introduction.

Following is the key to the ratings:

- VERY SIGNIFICANT
- SIGNIFICANT
- CONTRIBUTING
- NON-CONTRIBUTING