THE PELICAN BUILDING
HISTORIC STRUCTURE REPORT

Fig.1: Pelican Building
Sketch elevation of north side, J. Esherick, Arch., 20 Feb.'56

TABLE OF CONTENTS

I. INTRODUCTION ..............................................................1-3
   Introduction ...........................................................................1-3
   Purpose & Methodology ..........................................................3
   Key Plan ...................................................................................4

II. HISTORY .............................................................................5-8
   California Pelican .....................................................................5-8
   Earle C. Anthony ......................................................................8-10
   Anthony Hall/The Pelican Building ........................................10-18

III. DESCRIPTIONS ...............................................................19-20
   Site .......................................................................................19-20
   Building Exterior .................................................................20-21
   Building Interior .....................................................................21
   Character Photos ......................................................................22-23

IV. SIGNIFICANCE .................................................................24-26
   Evaluation of Historic Significance .........................................24-26
   Assessment of Historic Areas & Elements .............................26-29
   Summary of Significant Spaces & Features .............................29-31

V. RECOMMENDATIONS .......................................................32-33
   General ..................................................................................32-33
   Reuse and Rehabilitation ......................................................33-36
   Materials: Site & Landscape ..................................................36-37
   Building Exterior ....................................................................37-41
   Building Interior .....................................................................41-43
   Building & Energy Systems ...................................................43-44

VI. PHOTOGRAPHS & DRAWINGS .........................................45-49
   Historic Documents ..................................................................45-49
   Site .......................................................................................45-49
   Building Exterior ....................................................................50-54
   Building Interior .....................................................................55-58

VII. BIBLIOGRAPHY & REFERENCES .....................................59-63
   446 17th Street #302 Oakland 94612
   510 418 0285 mhulbert@earthlink.net
THE PELICAN BUILDING HSR

INTRODUCTION

The Pelican Building, located on and nearly central to the campus of the University of California at Berkeley (UCB), is a small (approximately 2,000 square foot), one-story structure housing offices and a meeting space. It was designed during 1955-56 by the architect Joseph Esherick (1914-1998), erected by the Dinwiddie Construction Co. in the latter half of 1956, and opened in November. The structure is additionally named Anthony Hall for its benefactor, Earle C. Anthony (1880-1961). Anthony donated this building to the University for the purpose of housing a student humor publication, *The California Pelican*, which Mr. Anthony founded as an undergraduate in 1903.

As summarized in the course of this HSR, the Pelican Building has readily identifiable historical significance based on:

- Its renowned Architect, Joseph Esherick;
- Important historic associations, including to the benefactor, Earle C. Anthony; the publication that is its namesake, *The California Pelican*, and to the University itself;
- Its distinctive architecture.

By way of introduction, at least two sites were initially under consideration following Anthony's proposing the project to the University, including a site further west, adjacent to Dwinelle Annex and, presumably, also on the south side of the Creek (as is the selected site). At that same initial time, Anthony and the University considered the services of the architect Bernard Maybeck (1862-1957), with whom Anthony had previously collaborated. Maybeck apparently deferred the commission to Esherick. Thus, at the outset of the design effort, Esherick was at the architectural helm, with Maybeck associated as a consultant.

The earliest design concepts for the building were in the form of broad-brush sketches inspired by Greco-Roman temples (fig.22). The source of this design inspiration was more than likely Anthony. In fact, there is a lot of documentary evidence for the supposition that Earle Anthony was idiosyncratic. His home in Los Angeles was designed and convincingly executed in the style of a Medieval castle.

Yet, the Pelican Building was realized from the original purchase order for a concept design – between “Joseph Esherick and Bernard Maybeck Architects, Associated” and UCB – to its opening day in just 26 months. The
construction contract [between Dinwiddie Construction and UCB] was signed on the 18 May 1956, and the building was opened within less than six months, on 24 November. So there was no lack of cooperation, and whatever relationships existed somehow resulted in an economy of scale and time.

Foreshortening the accomplishment even further, a December 2, 1955 letter to Esherick from Evans, the University's architect, provides further initial direction from the Campus Planning Committee:

"A structure compatible with creek and garden environment, dark or reeding in color value, “Woody” and/or Maybeckian in character."

An emphatic direction, the success of which has been manifest, as the Pelican Building is, assuredly, “Woody” and “Maybeckian.” Yet which was apparently not the idea of Mr. Anthony, about whom Evans concluded his December 2 memo to Esherick:

"While the design direction expressed by the Donor has been monumentally nebulous and/or generally in conflict with this ["Woody" "Maybeckian"], we are agreed that the effort should be made to sell an appropriate design."

The first design sketches exercise a Greco-Roman temple concept, both in parti-like plan sketches and in expressive, chalk-drawn perspective sketches. While such sketches provide a basis for discussion of the project, their weight must be considered with caution. First, because those sketches do not include any meaningful content — in fact lack the inference of any direct geography — thus present themselves as highly conceptual. Second, because once the building site was established — in December of 1955 — the design process continues without any further reckoning of a temple-like structure. While the plan arrangement materializes over time (fig.24), early elevation sketches zero in on the character of the building as realized: an elongated pavilion (figs.3a-25).

The Pelican Building was realized as a pavilion-like structure in a wooded setting. Its primary part, projecting east-west, is an elongated, gabled building form with substantial window wall areas; its secondary part a perpendicular rear wing, slightly off center, also gabled and partially glass-walled; and its tertiary part an outdoor terrace filling the northwest quadrant between the front structure and its rear wing. The front building entrance is announced via a gabled roof canopy projecting forward and standing along what is, otherwise, a freestanding colonnade that shelters a lateral entry walk beneath a wooden trellis. Another colonnaded trellis stands on the rear terrace.

The building’s architectural characteristics allow for a range of interpretations.

Though of the mid-to-late 1950s, the Pelican Building’s architecture largely appears to be of the earlier 20th century. It incorporates such craftsman-like characteristics as wood timbers, industrial steel window sash, modeled stucco, clay tile roofing, and ornamental cast concrete. Its forms and spaces are, as noted elsewhere, Maybeckian — i.e.; wooded, timbered, gabled, low-slung, deeply overhung, artistic (fig.7). And its architectural antecedent appears to be Maybeck’s First Church of Christ, Scientist [1910-12], which stands in the nearby south-of-campus area.

Alternatively, prominent exterior features of the Pelican Building are its front and rear colonnades, which are composed of sets of concrete columns and redwood trellis members (fig.8). The columns themselves were made by the pouring of concrete into heavy duty tubular forms of a cardboard-like material that is manufactured by spiral winding, like a paper towel tube, and which was made available commercially in the mid-1940s under the brand name Sonotube. This process produces cylindrical columns, with the spiral from the shape of the form embedded in the surface of the finished concrete. The resulting forms are distinctly modern.

Yet, those columns are the only feature of the Pelican Building exterior that convey a modern design aspect. Moreover, except for the two that support the projecting roof of the entry canopy, the columns are not attached to the building but, instead, support what are essentially site structures. Without those columns the building would not convey a mid-20th century character.

What is also evident in the building records is that the Sonotube columns were not used to convey an explicit design purpose. They were an element of Esherick’s work before and after this building. And, strangely, the only documentation specific to these columns in project correspondence finds Esherick and/or Anthony dissatisfied with their finish and exploring the potential to have them “honied” so as to remove their spiral finish. So the most obviously modern detail of this building — the spiral pattern resulting from the modern method of employing Sonotubes — was at least in part unintended.

An additional interpretation is that the Pelican Building merges stylistic characteristics in a unique way for its time and place. In this respect, its design can be seen as a bridge between the Craftsman-style era and the Modern. The building can even be seen as a last, late work of Craftsman-style architecture — an homage to the heroes of the earlier Bay Area architectural tradition — and in a setting that is central to that tradition, the UCB campus.
One further interpretation is that, given its design in the late-post WWII period, it embodies historical tendencies that had been absent since the late 1920s, but that were then beginning to reemerge, and did so increasingly from this point on into the 1960s and 1970s.

None of these interpretations can be argued with certainty. What is certain is that the the Pelican Building’s craftsmanly design was a curious direction not only for the mid-1950s, but by an architect whose every other work, including works contemporary to the Pelican Building, were in a Modernist mode. As a result, in this HSR, the conclusion is that its architecture — while good, high quality, and well detailed — is not the primary basis for a finding that the property has historical significance, as it is not a distinctive example of the architecture of its time.

A primary basis for a finding of historical significance is that it is a work of the late, highly important, San Francisco architect, Joseph Esherick. In addition, it is the only one of his individual works on the campus of U.C. Berkeley, where he taught architecture for more than three decades, and where he served as Dean of the School of Architecture in the late-1970s.

Another primary basis for significance are several historical associations between the Pelican Building and persons and organizations of historical importance: the first being an association to the founder of The California Pelican, Earle C. Anthony, who went on to become a pioneering and prominent figure in automotive and radio businesses. The second important historical association is to the institution of The California Pelican, a student publication founded by Anthony in 1903, and which survived until c1988.

A secondary basis for a finding of historic significance is the Pelican Building’s architecture, a mid-20th century design blending Craftsman and Modern styles and elements.

**Purpose and Methodology**

The primary purposes for this HSR is to document the history of the property, identify historic building significance — specifically the relative significance of building areas, spaces and features — and make treatment recommendations, all in order to provide and disseminate such information to those responsible for future projects that would affect the property.

Primary historical research focused on the Archives of the University’s College of Environmental Design [UCB CED]. Therein, the collection of architect Joseph Esherick/EHDD proved valuable and indispensable. The work required to translate what are relatively voluminous records for what is otherwise a rather modestly sized building was undertaken by the University’s Steven Finacom.

This HSR work required numerous site visits in order to photograph and record the character of these landscapes and buildings. A selection of photos are included herein, and a separate disk containing all photos is appended, for the record.

**HSR Project Team**

**UCB Project Management:**
**UC Berkeley Capital Projects**
**Physical & Environmental Planning**
**A&E Building, 3rd Floor**
**Berkeley, CA 94720-1380**

Emily Marthinsen, Assistant Vice Chancellor
Beth Platiniza, Associate Director
Steve Finacom, Planning Analyst

**Historic Preservation Architect:**
**Preservation Architecture**
**446 17th Street, #302, Oakland, CA 94612**

Mark Hulbert, Preservation Architect
ph: 510-418-0285; email: mhulbert@earthlink.net

---

**Fig.3: Pelican Building Front Elevation Sketch, Joseph Esherick, Arch., dated 12 March 1956 (UCB CED Archives)**
Fig. 4: Pelican Building  
Key Plan
The origins and history of the Pelican Building/Anthony Hall are closely linked to the origins and fortunes of its namesake publication.

Student-run publications were an important part of the Berkeley campus community nearly from the inception of the University. In the first century of the University's existence there were over 60 separate student publications (some of them long lasting, some ephemeral), and the total has grown since then. (Centennial Record of the University of California)

The most prominent among the older publications were the student newspaper the Daily Californian (founded in 1871/73, and operating under the current name since 1897), the Blue and Gold yearbook, and a number of specialty publications including literary journals such as the Occident and technical journals such as the California Engineer.

Each publication has its own sphere of influence, traditions, and rituals. The yearbook, for example, was initially published by the Junior Class; the editor of the Daily Californian was typically a senior man; the English Club took the lead in publishing the literary magazine.

In the early 20th century, however, as the Associated Students of the University of California (ASUC) consolidated control over various student activities, most of the publications had come under the jurisdiction of the ASUC.

These publications received funding through the ASUC (or at least had their budgets administered by it), and, while generally retaining editorial independence, were
organized in a Publications Council which had a representative on the ASUC Executive Committee, the precursor of the ASUC Senate.

As the ASUC grew, it also began to hire professional staff to help advise and guide student operations. The professional staff came to include a full-time Publications Advisor and support staff who helped provide continuity of each publication between the ever-changing student editorial staffs and assisted—and sometimes directed—the publications in abiding by ASUC and University rules.

The Pelican was not the first humor publication at Berkeley, but it would become the longest and most prominent.

“Humor magazines on the Berkeley campus began in October, 1891, with the appearance of Smiles, a bi-weekly publication whose cardinal function, according to the editor, was “not to teach or preach, but to amuse.” Smiles discontinued publication after three issues on December 18, 1891. A second humor magazine, Josh, began in September, 1895. It was published in San Francisco and designed for university audiences at both the University of California and Stanford University, with an editor from each school. After editorially complaining about a lack of interest in the magazine at both schools, Josh published a final issue in February, 1897.” (http://sunsite.berkeley.edu/uchistory/general_history/campuses/ucb/studentpubs.html)

(This was an era of Bay Area humorists—both whimsical and bitterly biting—off campus, as well as on. For example, the 1890s were also the period of the rise to prominence of San Francisco Examiner political and social satirist Ambrose Bierce, and the relatively brief but prominent San Francisco humor magazine, The Lark, founded by Gelett Burgess who had taught at Berkeley and authored the famed “Purple Cow…” doggerel.)

The California Pelican produced its first issue April 16, 1903 with a ten member staff under the direction of senior Earle C. Anthony. It continued a publications run for eight decades, producing new issues every month of the academic year for much of that time, and eventually consolidating to three issues a semester.

Initially the Pelican was produced by the Pelican Publishing Company. From 1918 to 1926 it was published by the English Club and, after 1926, it became an official ASUC publication. (Pickerell, University of California: A Pictorial History. Page 84). It continued to be part of the ASUC publication's structure until its end in the 1980s.

The Pelican was the student humor magazine officially sponsored by the ASUC. In the 1910s, 20s, and 30s there were various other short-lived student humor publications, most of them “unauthorized.”

By 1965 Pelican circulation averaged 7,000 copies per issue at a time when Berkeley campus enrollment was about 30,000 students (Centennial Record of the University of California). Thus, the Pelican was reaching at least one in four Cal students, and probably more, a circulation only rivaled by the Daily Californian newspaper among student publications.

As late as 1972 the Pelican was advertising itself as having a circulation of 3,000, and publishing six times a year “following school schedule.” (Writer's Market, 1972, page 112).

Throughout most of its life, the Pelican was one of the major campus publications. The Daily Californian would regularly headline some variation on “Pelly Flies Today” on the front page, signaling a new issue, and student sales staff would fan out across the campus to sell copies, often using eye-catching marketing techniques. By the 1950s and 60s much of the business staff were women and the sales staff were often women from sororities and other living groups who could earn social credits for their houses by participating.

In form, the early Pelican seems an outgrowth of the humor sections of the Blue and Gold yearbook, a publication that Anthony himself had edited in 1901-02 when he was a junior.

In the late 19th and early 20th centuries each yearbook contained, near the end, a “Josh” section that featured photographs with humorous captions, cartoons, poems, and short essays and even playlets that poked fun at campus life and personalities. Leading students, student living groups and organizations, faculty, administrators, and campus traditions and social mores were sarcastically lampooned in these generally unsigned entries, sometimes by inference, sometimes by name.

The Pelican continued in this tradition throughout its existence, combining short essays, comments, occasional verse, cartoons and graphics to poke fun at campus life and society in general.

Readers seem to have been generally entertained and sometimes offended, and the Pelican periodically found itself in hot water. In the 1920s the publication ran afoul of both President David Prescott Barrows and President William Campbell. Campbell, one historian writes, was “personally shocked by Occident and Pelican articles reflecting the new literary tastes” of the 1920s. (C. Michael Otten, University Authority and the Student, page 92).

A brief review of University administrative records from later years finds mid-century files filled with internal
notes from deans, alumni, and administrators complaining or worrying about this or that recent Pelican indiscretion and its effect on the public image of the University.

In the 1950s, for example, the Pelican was criticized for an essay suggesting that male students would be calmer during finals if the Student Union (then Stephens Hall) were to be turned into a brothel where male students could have their anxieties relieved. At other times the magazine was condemned for articles or cartoons that were regarded as offensive to religion, morals, revered University figures, or politicians whose enmity might have a bad effect on appropriations for the University. Some of the student editors and writers were suspended for periods of time when the administration wished to crack down on items regarded as particularly offensive or tasteless.

In his memoir Chancellor at Berkeley, Glenn Seaborg wrote that during his tenure at the end of the 1950s and beginning of the 1960s he received many “exasperated comments, and similar expressions” from parents and others complaining about the content of the Pelican. (Seaborg, page 313).

In 1961 the Blue and Gold yearbook described the Pelican as a publication that “has tried to represent the best in college humor. Sometimes successful, sometimes not, it at least has been controversial. Published six times during the academic year by ASUC, it is regarded by many as the last refuge of sanity within the one-mile limit. Iconoclastic to a fault, the ‘Pelican’ regards the world, in general, and the campus, in particular, with a sneer of cold command…” (Blue and Gold, 1961, page 176). (The one-mile limit referred to the zone around campus from which, by State law, sale of alcohol was prohibited).

In 1963 the yearbook reported, “Since its humble but raucous inception, the magazine has risen steadily on the national scene, until recent it was ranked in the top ten college humor magazines by the New York Times…Over the last year, the staff of ‘tomorrow’s humorists today’ as they like to call themselves, has devoted issues to the Cuban crisis, sex, and parody. Members of the editorial staff consider the work they do good experience for later journalistic endeavors, and ‘one hell of a lot of fun!’ (Blue and Gold, 1963, page 190).

Two years later, the 1965 yearbook called the magazine “the University’s bastion of humor and satire…the Pelican serves as the primary source of humorous amusement and satirical social criticism for the entire University, and in the last few years, it has become the first-ranked college humor magazine in the nation. The other magazines steal shamelessly from its pages, while the Pelican steals only jokes, which are authorless and merely folklore…It is also to make money, piddling on the editorial side, but highly lucrative for ad salesmen on the managerial staff.” (Blue and Gold, 1965, page 195.)

In addition to its core humor content, the Pelican also developed the tradition of a periodic fashion section in which leading women students were pictured in photo spreads wearing items supplied by several Berkeley clothing stores that were also Pelican advertisers. Dick Corten, an editor in the 1960s, calls this a “Vanity Fair” element of the publication.

The Pelican became, during its long career, an important publication attracting substantial creative talent. While perhaps not always as prominent as some other college humor magazines such as the Harvard Lampoon, it had a strong reputation and solid staff for most of its existence.

The City of Berkeley Landmark application for the building by Robert Johnson and Gary Parsons details a number of the more notable contributors over time. They included: cartoonist Rube Goldberg; Ted Key, later the creator of the ‘Hazel’ cartoons; science fiction author Ron Goulart; Jon Carroll, former magazine editor and longtime columnist for the San Francisco Chronicle; Dexter Waugh, later a San Francisco Examiner reporter; writer and singer Susan McCorkle (‘Susan Savage’, ‘Suzannah McCorkle’); Grant Gaston, caricaturist; Joel Beck, cartoonist and ‘underground’ artist; mystery writer Mitchell Chefitz.

Dick Corten also notes that Frederick Schiller Faust (‘Max Brand’) the originator of the ‘Dr. Kildare’ character was also a Pelican writer, along with Bill Brewer, a cartoonist who worked for Hallmark, artist Bob Bechtel, cartoonist Joel Beck, and Robert (Bob) Wieder, writer and comic. (personal interview with Steven Finacom, December 16, 2010).

Source of the Name

Since the original name of the building endures in both the architectural motifs and the sculpture outside, the source of the term “pelican” should be described.

Today it’s sometimes explained as a derogatory label applied to co-eds at Cal who—as they hurried about the campus with their Victorian-era large hats, long dresses, bustles, and armloads of books—were regarded as ungainly, unattractive creatures by some of the male students. Studious women students were often mocked by male students in the early days of the campus, just as a high academic achiever among the men could find himself labeled as a “grind”, that is someone who was at college simply to hit the books, not to learn about and enjoy life.
A simpler, more brutally direct, interpretation of the term was given in 1986 by Professor Garff Wilson, who knew Anthony. “In 1903, the slang term for an ugly female was ‘a pelican’. The humor magazine adopted the name—not to honor a bird—but to poke fun at unattractive co-eds.” (Wilson, Unidentified Man, page 104)

The 1903 yearbook (academic year 1901-02) edited by Earle Anthony literally illustrated and supports this concept with two drawings; one showing an extremely homely pelican standing near a co-ed (fig.17), and the other showing a facetiously proposed “stained glass window” for the women’s common room in North Hall, with a large pelican depicted (fig.18).

The 1900 Blue and Gold yearbook—published four years before Anthony founded the publication—devoted a section to what it called “The Pelecanus Nuisance,” apparently obliquely referring to a number of specific women students. “The plumage of the fowl is usually of a dingy color with occasional garish markings; grayish, hair-like, feathers about the head; eyes round and glassy. But the most characteristic is its enormous bill and its use of it, called, technically, ‘sticking in its bill.’ It frequents the shallows of the bays called English and Pedagogy in season and out of season. There it finds its prey…..a stuffed specimen is of much greater value to the museum than one in a live state.” (Blue and Gold 1900, page 158).

(It is not to be supposed, however, that the homely women students or academic students of either gender were singular targets of ridicule. Attractive women who came to college apparently with the goal of finding a husband and supposedly used their feminine wiles on male professors to get better grades were also made fun of, as were, conversely, men who spent too much time socializing or trying to be popular or “going out” for so many activities and organizations that they exhausted themselves and failed academically. Almost anyone could become the target of student sarcasm—except, perhaps, certain favored athletes or the occasional kindly, beloved professor. Earle Anthony himself, the founder of the Pelican, was also the target of biting humor when he was a student.)

EARLE C. ANTHONY

Earle Charles Anthony (figs.19-20), born in 1880 in Illinois, moved to Southern California with his family as a child, and grew up there. He came to the Berkeley campus—then the only general campus of the University of California—as a student at the end of the 19th century when the institution was embarking on a period of great change.

The somewhat provincial, 19th century, brick-and-ivy campus was still very present, but Phoebe Hearst had just funded her grand architectural plan for the University, and Benjamin Ide Wheeler had arrived (in 1899) as University President, a position he would occupy for twenty years while the institution rose to national prominence and was physically and academically transformed.

In the 1902 Blue and Gold (covering the year 1900-01), an unsigned editorial—possibly penned by Editor Anthony—stated “the past year of University work might be characterized as the banner year of California’s progress. No preceding twelve months of University history have marked off so many mile stones of solid advance” (Blue and Gold, 1902) This was the milieu in which Anthony founded and pursued his pet publication.

Anthony was elsewhere credited as a co-author of “A Stein Song”, which appeared in at least one Cal song book and included these lines that may be reflective of his own interpretation and experience of student life in that era.

“Better than riches of worldly wealth is a heart that’s always jolly, Brimming with happiness, hope and health, and warmed by a love divine.

But sweeter than riches we win by stealth are the hours we give to college…”

Rube Goldberg, who would become one of the Pelican’s most famous alumni, would later describe Anthony during his student days in these words: “I had great admiration for Earle Anthony, the editor of the Pelican, a tall, gangling young man who wore his floppy senior stovepipe at a jaunty angle and took long strides across the campus like one who had the past, present and future all wrapped in a nice, secure, package.” (Irving Stone, editor, anthology, There Was Light, page 47)

Not all of Anthony’s classmates shared a favorable view of him. An interesting anonymous poem appeared on the last page of the Josh section of the 1903 Blue and Gold (fig.21). (The fact that Anthony himself was the editor that year raises the question—unanswered—of whether he sponsored, or perhaps even authored, the parody of himself, or whether somehow his staff inserted it without his knowledge. The pointed and detailed sarcasm of the piece implies authorship other than Anthony.)

“My mamma and my papa, and my good old grannie dear,
They packed away my bottle and my toys,
And they came with me to Berkeley to watch over me for fear
Lest I might associate with naughty boys.
For I’m Earle C. Anthony
Biggest Child in all U.C.

I sought and found a frat, where the men are tailor-made;
My papa’s wealth sufficed to get me in;
(Except with Jimmie Sutton, it’s ‘rep.’ is quite immense;)
But my infant graces didn’t seem to win.
I’m Earle C. Anthony,
And I move in the swellest society.

I have an automobile which is strictly up-to-date;
I have a ‘choo choo’ bicycle to ride;
But whoever hopes to get a nickel from me will require
A cork-screw and a suction pump beside.
I’m Earle C. Anthony
‘Tightest’ man in the U. of C.

My jaw is double-jointed and my throat can never tire;
My tongue is like the clapper of a bell;
I talk of other people’s faults and of my virtues great,
Till frequently I am told to go to —— well,
Anyway, I’m Earle C. Anthony,
Orator of class of Naught—Three.

With a staff of willing workers to do the hardest work
I am getting out a famous B. and G.
And it’s joy to know, while ‘slamming’ profs and students right
and left,
That no one can possibly ‘slam’ me.
For I’m Earle C. Anthony
Editor of the B & G.
Hip! Hip! Hooray for me!

Whoever the author was, there are several hints in that
verse of what would come to characterize Anthony’s
later adult life—both wealthy and financially canny,
interested in automobiles, socially connected, glib talker, club-
man, eccentric.

After graduation, Anthony returned to Los Angeles,
where he seems to have quickly gone into business.
University Public Ceremonies head Professor Garff
Wilson would later write that Anthony “began a hugely
successful career in business. He became California’s
leading distributor of Packard motor cars, owner of the
famous Los Angeles radio station KFI, and a director of
numerous other enterprises.” (Unidentified Man on the
Right, page 103-04) He was also twice the president of
the National Association of Broadcasters.

Anthony married Irene Kelly, five years his junior, some-
time before 1910—and presumably after graduation in 1903—and they had one child, Earle Kelly Anthony,
apparently born in 1912. Research could find little
detailed information about either wife or son.

Kelly Anthony seems to have followed partially in his
father’s footsteps, attending Cal and graduating in 1933
with a degree in Anthropology. During his student
career he was a member of a fraternity, dramatic soci-
eties, a manager on the Pelican staff, and a Rally
Committee member, as well as competing in fencing and
basketball. (Blue and Gold, 1933). It would not appear
he married, although in the 1930s he had been described
as “romantically coupled” with movie star Toby Wing,
“one of the screen’s brightest blondes”, perhaps a reflection
of the business and society circles in which his par-
ents moved in Los Angeles. (UPI story, August 10, 1935)

Irene Anthony reportedly died in 1954. Earle C.
Anthony died in San Francisco August 6, 1961. The bulk
of his estate, estimated in the millions, was left in “con-
fidential trust funds” which apparently went largely and
ultimately to the University of California and the
California Institute of Technology. “His legacy today:
with no living descendants his fortune still endows the
Earle C. Anthony fellowships at the University of
California and Cal-Tech. Googling his name will bring up
a host of scientists with ECA grants in their curricula
antiqueadios.org/gazette/eca.htm)

Portions of his estate went to his son, Kelly, who outlived
his father by only a few months, dying December 13, 1961,
in Los Angeles at the age of 49. Kelly Anthony left
$100,000 to his nurse and additional funds to his doctor.
The cause of his death was not given. (UPI story in
Oakland Tribune, December 19, 1961, page 8)

The implication that the son had perhaps suffered from
long and debilitating illness—favoring both a nurse and
a doctor with large financial bequests—and the fact he
died so soon after his father suggest that Earle Anthony
probably knew as his own death approached that he
would have no long-lived family heirs; this might have
influenced his decision to leave his money to educa-
tional institutions.

Anthony was, by most accounts, a larger than life busi-
ness figure in Southern California during much of the
first half of the 20th century. He had a direct hand in
shaping several of the cultural institutions which endur-
ingly came to represent Southern California character:
car culture; mass broadcast media; modern advertising
and decorative arts.

Controlling the distribution of Packard automobiles in
California—then developing into the auto mecca of the
nation—he had opulent showrooms built in Los
Angeles, on Van Ness Avenue in San Francisco (which
still survives) and on the shore of Lake Merritt in
Oakland.

Starting a radio station in 1922, he built it into the pow-
erful KFI, which he used for cross-marketing with his
automobile empire. “Firsts” listed in KFI’s chronology
include, in 1924, the first network broadcasting on the
West Coast in a 500-mile hook-up with KPO, San
Anthony was also described by one biographer as “published playwright with three pre-WW1 shows, occasional ghost writer of radio scripts for NBC comedies, savior of the Hollywood Bowl during the depression, instrumental in developing car radios, founder of the Los Angeles Auto Show…” (Art Landing, June 26, 2009, http://www.antiquradios.org/gazette/eca.htm)

Anthony was a longtime Bohemian Club member and co-authored at least one of the “Grove plays”—Aloha Oe: a Legend of Hawaii—for 1958, performed at the famed annual encampment on the Russian River. In his later years when Anthony would come to the Bay Area to discuss progress on the Pelican Building design, he would stay at the Bohemian Club year-round headquarters in San Francisco.

The creative attributes and flair for the dramatic and controversial that had characterized Anthony as a student and shaped the Pelican, persisted in some ways through his life, and are evident in an anecdote he told, as an elderly man, to Robert Evans, the University Architect. “He had a white bulldog and had walk it outside”, recalled Evans. “The dog would be sniffing out other dogs and he said, ‘You know what I did, I painted his balls gold, and the ladies were all screaming a fit’.” (Evans, personal interview with Steven Finacon, May 2010). That hints at the edgy humorist and intentional provocateur Anthony apparently liked to be, and put into context his apparent lifelong interest in seeing the humorous side of things and pushing official boundaries.

**ANTHONY HALL**

**Planning and Origins of the Pelican Building**

After the ASUC—student government—consolidated control over most student publications in the 1910s and 1920s, office facilities for the key publications, including the Pelican, were provided in Stephens Memorial Union, the new student union, completed in 1923.

That student union was, from the start, intended in part as a home for student publications. Features of the planned building, the alumni magazine reported in 1916 (seven years before actual completion), would include “four stories, arranged to contain a cafeteria, the Associated Students’ Store, the ASUC offices and committee rooms, the AWS rooms, the graduate manager’s quarters, the offices of the California Alumni Association, the publications offices of the Occident, California, Pelican and the Blue and Gold, a meeting hall, a banquet room, a dance hall, an auditorium and alumni hall…” (California Alumni Fortnightly, October 28, 1916, Page 216.)

Not long after the Pelican and other publications were
settled into the Union, however, plans began for a separate student publications building on an adjacent site. Designed by George Kelham and completed in 1931, this original Eshleman Hall (now Moses Hall) was planned and purpose-built as a student publications facility, across a small courtyard from the Stephens Memorial Union. The Pelican would have had offices in Eshleman, along with the Daily Californian, Blue and Gold, Occident, and other publications and the ASUC’s publications advisor and his staff. “These activities energized the building with the journalistic fervor of newsroom editors, reporters, advertising managers, and sales staff” (Helfand, page 84).

The building also housed offices and facilities of the California Marching Band and student singing groups, and the Eshleman Publications Library, which physically resembled an English baronial hall. The publications library included complete collections of bound volumes of UC student publications and reference materials, a general reading collection useful to student journalists, and ample room to study. Use was restricted to students working on ASUC-sponsored publications. (Today, the building is Moses Hall and houses academic departments; the old Publications Library space houses the Philosophy Library).

Eshleman Hall would continue for a quarter century as a center of student creative life until the construction of the “new” (and present day) Eshleman Hall in the mid-1960s. During much of this time the Pelican would operate out of old Eshleman, until the mid-1950s when Anthony provided the building with the golden opportunity to leave for its own, free-standing, quarters.

Planning for and construction of the Pelican Building
In brief introductory summary:

- The Pelican Building concept was suggested sometime before 1955
- Specific planning discussions with the donor took place in 1955
- The architect, Joseph Esherick, was officially appointed by the University in December 1955
- Planning and design work continued through the first half of 1956
- Dinwiddie Construction was hired as the contractor and the building was essentially complete by dedication on November 24, 1956

Total cost was over $134,000 (including construction and design fees, and the adjacent bridge over Strawberry Creek), of which Earle Anthony contributed $110,000 and the University funded the rest. Detail work on the building continued through 1957, including installation of two cast concrete plaques at the entrances to the building, memorializing the publication and Anthony.

Earle C. Anthony appears to have conceived the idea of funding the construction of a Berkeley campus building to house the Pelican in the mid-1950s. The exact date is unknown, but since the Pelican would have turned 50 years old—a symbolic anniversary, at least—in 1953, possibly then or soon after would have been when the concept arose.

In a later summing up of Anthony’s career Professor Garff Wilson stated, “retiring to Palm Springs in the 1950s, and by now a wealthy man, he remembered his love for The California Pelican...” (Unidentified Man on the Right, page 103-04)

Anthony’s wife Irene had also died in 1954, which may have been not only an occasion of personal grief but the beginning of a process of reflection on mortality, reevaluation of his life, and consideration of how he would like to be remembered and what he would do with his fortune.

Whatever the motivation, Anthony approached the campus, probably through President Sproul (a fellow Cal alumnus and friend) about building a permanent home for the magazine in that period.

When he raised the idea of a building for the Pelican, the University was already embarking on planning for the new California Student Center, the complex that would ultimately include the Student Union, the new Eshleman Hall (a combined student government office and publications building), a campus Dining Commons, and a University auditorium/theater (now Zellerbach Hall).

These planned facilities would shift the operations of student publications from the Stephens/Eshleman Hall complex several hundred feet southwest to the new Eshleman Hall along Bancroft Way. There it was anticipated that student publications would be provided with a suite of offices and shared facilities.

Thus, the donor-introduced concept of a separate building for a single student publication did not fit well with either the programmatic planning for the new facilities, or the space planning for the site. In the large new complex that had to be fit into a compact area, a separate structure solely designed for one publication wouldn’t be a reasonable possibility.

However, for practical reasons the University wished to accommodate Anthony. Joseph Esherick set the context in his oral history.

“Anthony was a really nice guy. It was interesting, Bob Sproul was president of the University at the time, and he was so anxious about getting some financial commitment from Anthony to build up some endowment or
something or other that he would call me at home at night and ask how things were going. I’d come in from sailing all beat up on a Sunday, and there would be Bob on the telephone wanting to know how things were going. [Interviewer] Because it was part of a bigger endowment? [Escherick] Yes. They got a lot of money from him, considering the days when they weren’t getting much money from folks.”

“The offer [of the building], however, was not greeted with wild enthusiasm” was the similar take of Professor Gariff Wilson. “A building to house a humor magazine was at the bottom of everyone’s priority list. But President Sproul, being an old friend of Anthony’s, knew that a large bequest from him was possible if he were humored and cultivated. So the President decided that the offer should be accepted and the building erected.” [Wilson, Unidentified Man, page 104]

This perspective was also confirmed by Robert Evans, Campus Architect, who was directly involved in the project. In 2010 Evans recalled that Sproul “wanted to keep Anthony happy”, and took a strong interest in the project. [Evans, Personal interview with Steven Finacom, May 2010].

Anthony’s price, then, for a large unrestricted gift after his death (which he indeed gave) was that the University take him seriously when it wanted to build a home for the magazine that would be finished during his lifetime.

A number of sites were apparently considered. Evans recalled that “first of all he [Anthony] wanted the Pelican Building to be in the Eucalyptus Grove. Then he wanted Faculty Glade or something like that. So we wrangled with him.” [Evans, Personal interview with Steven Finacom, May, 2010].

The University made efforts to direct—or deflect—the Pelican Building proposal in other directions. November 2, 1955 the Berkeley Campus Planning Committee reviewed the possible project and recommended “that the facilities for the Pelican magazine can be developed with an appropriate degree of entity in the location now set aside for the Student Union and that the gift [from Anthony] should be accepted providing that the design and siting be considered simultaneously with the plan of the Student Union” [Evans to Sproul, Nov 3, 1955].

Esherick’s papers for the project contain a packet of photographs of the Alumni House vicinity, soon after that structure was completed, implying that a possible Pelican Building site may have been discussed in that area, which would have been the northwest quadrant of the Student Center complex site.

Campus staff also apparently made an effort to convince Anthony that instead of a separate building for one magazine, he should instead fund a new publications library for all the student publications as part of the Student Center complex. [Evans to Sproul, Nov 3, 1955] This would have been consistent with the character of old Eshleman Hall, where the Pelican staff shared the resources of the Publications Library.

For whatever reason—presumably Anthony’s interest in something built quickly, and stand-alone, for his pet publication—these efforts to integrate the Pelican proposal with the Student Center planning failed. Evans also noted in one memo that Anthony wanted to get at least $35,000 of his proposed donation into the hands of the University before the end of 1955 “because of tax problems.” [Evans to file, Oct. 5, 1955, CED Achives, Escherick papers].

The site then shifted to the present location of Anthony Hall. “Getting a site that would make him happy, we decided next to the old Heating Plant and next to the Creek”, Evans recalled. [Evans, Personal interview with Steven Finacom, May 2010].

George Honsey, one of Escherick’s design staff, also believes that Louis DeMonte, who worked for Evans and managed the campus building program in that era, was a factor. “DeMonte was one of the principal cardinals. You didn’t do anything [on campus] unless DeMonte gave you the blessing.” [Honsey, personal interview with Steven Finacom, December 17, 2010].

Along with DeMonte, William Wurster (Dean of Architecture) and consulting campus landscape architect Thomas Church would probably have been consulted about a new building siting use.

The approved site was and is in an angle of Strawberry Creek, directly across from old Eshleman/Moses Hall. Although clearly not the first choice—as described above—it probably had at least three advantages from the standpoint of University administrators: it was located, initially at least, near the existing student publication quarters and thus could be better managed [the student publication offices would not, indeed, move to the new Eshleman Hall until nearly a decade after the Pelican Building became operational]; it sat in a corner of the campus that had not previously been designated as a building site, and thus would not displace any other large space planning efforts; a building, however eclectic and odd Anthony might desire, could be tucked into the location, without becoming a prominent feature on campus.

**Design of the Pelican Building**

Anthony was initially interested in Bernard Maybeck as architect for the project. Maybeck had designed Packard showrooms for Anthony in San Francisco and Oakland,
and Anthony’s own Los Angeles home.

Maybeck was, however, in his 90s when the Commission became available and did not have a functioning design office. (Maybeck would die in October, 1957, less than a year after the building was finished. The records reviewed for this report do not contain any indication of whether Maybeck saw the finished building or expressed an opinion about it.)

Esherick himself described the arrangement that ultimately evolved in his oral history.

“It was bizarre. Originally Anthony wanted Mr. Maybeck to do it, but he was obviously too old and had no office. So Louis DeMonte, who was then the campus architect, asked me if I would take it on and would hire Maybeck as a consultant. I asked if he would do that, and he said—I don’t know whether he said that he would ask Annie (Mrs. Maybeck) or whatever, but the story I got was that Annie vetoed the idea. The idea was that Mr. Anthony was known to drink, and she was afraid that he would lead Mr. Maybeck astray…” (Joseph Esherick, An Architectural Practice in the San Francisco Bay Area, 1938-1996, Regional Oral History Office, UC Berkeley, 1996, page 271)

However, Esherick did end up consulting with Maybeck frequently on the project, and the issue of Anthony and alcohol, if it was a real concern, appears to have been finessed by Esherick shuttling between Maybeck and Anthony, rather than getting the two of them together.

“Mr. Maybeck was very generous with his time”, Esherick recalled. “I used to go see him often at his house. I was running back and forth—and I was having a hell of a good time—I was running back and forth between Anthony and Mr. Maybeck, and then—well, Mr. Maybeck would give me criticism on something, and then Mr. Anthony would come up and stay at the Bohemian Club, and I would go over to visit him at the Bohemian Club…This went on in kind of a wonderful way for some time…one of the problems was that as we would go along, we’d get something designed, and then Anthony would veto it. The problem was, he’d either veto the design, or he didn’t like the site. So the site was always changing, and every time the site changed the design really had to change, because the conditions would be entirely different…”


Unfortunately, most of the early sketches in Esherick’s project files do not contain enough detail or context to identify a specific site so, based primarily on the Evans recollections recorded earlier, we do not know what loca-

tions might have been suggested beyond the Eucalyptus Grove, the Faculty Glade vicinity, and near the Dwinelle Annex or Alumni House.

The ultimate result was that Joseph Esherick became the architect for the project but consulted with Maybeck in the early stages to get his ideas, and his blessing for the general approach. As the design and planning process continued Maybeck’s hand became less and less directly evident in it.

In particular, the earliest concepts of a neo-classical stone temple, which Anthony and Maybeck had both discussed, disappeared entirely. Some of the early concept sketches for the structure are signed “Bernard R. Maybeck – Joseph Esherick Architects”, but as the design evolved it became Esherick’s commission alone, and after the building was completed Esherick took pains to correct erroneous press accounts saying Maybeck was the architect.

Several drawings in Esherick’s project files are large pastel sketches on butcher paper with bold forms and bright color highlights (fig.22). These are reminiscent of the way Maybeck would often approach a design project but according to Esherick’s contemporaries, the writing on the drawings is Esherick’s, not Maybeck’s. And Esherick would also, like Maybeck, do preliminary sketches on brown paper. These should not be interpreted as Maybeck drawings, although they were clearly informed by Esherick’s discussions with Maybeck. (Personal interview, Steven Finacom with Chuck Davis, George Homsey and Peter Dodge, December 17, 2011)

The final building is probably best described as a design by Joseph Esherick, with elements of Bernard Maybeck’s style apparent in it. Robert Johnson and Gary Parsons, in their City of Berkeley landmark application for the structure, accurately characterize the relationship thusly: “the building was Esherick’s but in oblique deference to Anthony it bowed toward many of Maybeck’s signature touches.” (The Pelican Building – 1956 – City of Berkeley Landmark Application, December, 2010. page 20).

As noted above, Anthony initially envisioned a building resembling a stone neo-classical temple on the exterior. Esherick and Maybeck met—they had known each other since the 1930s when, according to Esherick they had been introduced by architect Walter Steilberg—and Esherick recalled that Maybeck leafed through some old National Geographics and showed him a picture of a cylindrical Roman-era temple in Southern France as an example.

“He looked through a couple of them, and then finally he came to one that had the little round Roman temple at Nice in it. Beautiful little late Roman thing, Corinthian
columns, very elegant...He told me that then I should just make a tracing over this, and then take it to Mr. Anthony and show it to him...I made this drawing, and then took it over to the Bohemian Club to show it to Mr. Anthony. He took a look at it and said, ‘Ah, round building! You’ve been talking to Maybeck! He never got the Palace of Fine Arts out of his head! He keeps wanting to do round buildings, and they’re terrible. You divide it up into rooms, and they’re all pie-shaped, and who wants a pie-shaped room,” and so on and on like that. ‘That isn’t going to do.’” (Joseph Esherick, An Architectural Practice in the San Francisco Bay Area, 1938-1996, Regional Oral History Office, UC Berkeley, 1996, page 272-73)

Curiously, in Esherick’s design files on the project there is not much evidence of round classical designs. Instead, the early drawings in a neo-Classical idiom look very much like the famed Maison Carree, which is in Southern France and late Roman, but which is in Nimes, not Nice, and is rectangular, not round.

In any event, the pure neoclassical approach eventually disappeared from the design. Campus planning staff may have played a role in this, criticizing both the impracticality of a small temple as a functional office building, and the impossibility of constructing a stone edifice within the budget Anthony proposed. At one point Robert (Bob) Evans, the University Architect, and essentially told Anthony in [Evan’s words], a stone building would be so costly it “would be nothing more than a crypt in which to bury the Pelican.” (Evans to file, October 5, 1955, Esherick papers, CED Archives).

“It was suggested that Mr. Esherick be permitted to take a fresh approach to the problem with Maybeck serving as a consultant. Mr. Anthony agreed”, Evans recorded. (Evans to file, October 5, 1955, Esherick papers, CED Archives)

Two months later Esherick was formally appointed by the University as the Executive Architect for the project, with “Mr. Bernard Maybeck as your consultant.” (Evans to Esherick, December 19, 1955, Esherick papers, CED Archives).

Following the abandonment of the neo-Classical temple concept, the design approach steadily progressed towards the final Arts and Crafts influenced character of the actual building (fig.23).

Esherick’s design records on the project are voluminous and show various elements of the final building emerging and changing as work proceeds.

For example, the final form included a structure with three wings, each with a specialized use [editorial offices, business offices, library/meeting area]. Some of the earlier designs show just two primary interior spaces, with just a vestigial editorial suite appended to the north side of the structure.

Site context should be taken into account when considering the evolution of the design. Today, the Pelican Building fits comfortably on its site, its back to an unrelated academic building (Moses Hall) across Strawberry Creek and its face to a pleasant internal campus roadway and a large social sciences building.

In the 1950s, however, there was no Barrows Hall south of the Pelican Building. Instead, one of the physical education fields, then surrounding Hearst Gymnasium on three sides, was located there. This land use had been proposed to continue in the 1951 Campus Plan Study, which showed landscape on the Pelican Building future site.

Eshleman Road was in approximately the same place it is now, south of the site. To the north of the site was the student publications building, with which the Pelican structure would be programmatically connected.

To the west of the Pelican Building site was the old Powerhouse, a one-room red-brick building, functioning since 1934 as the University Art Gallery, with regular changing, public exhibits. The entrance to the Art Gallery faced east, and there was a modest forecourt with two sculptural Chinese dog lions.

Thus, it would have seemed sensible to orient the new building somewhat to the west, forming an east side of the Art Gallery forecourt, with a new bridge to the north forming a third side of the outdoor space and connecting directly to the main student publications building across the creek.

This programmatic geometry is apparent in many of Esherick’s sketches and plans. The west gable of the building initially contains a large main door, facing west (fig.23). Even when the door shifted to the south façade, the plans retained a generous staircase to the pergola up from the west. Today, pedestrians approach the Pelican Building mainly on a direct path from Eshleman Road, the old Art Gallery is closed and has no public access, and the bridge across the creek to the north is merely a shortcut to get to the center of the campus, rather than a legible route between the Pelican Building and Moses Hall.

The sense of the original proposed spatial arrangement did persist at least up through the mid-1960s when other student publications moved from the current Moses Hall to the new Eshleman Hall, and even perhaps until 1970 when the University Art Gallery closed and the University Art Museum on Bancroft Way opened.

Dick Corten, one of the Pelican editors, recalls that the
Art Gallery—where food was not permitted—would sometimes borrow the Pelican Building as a reception space for new exhibit openings and the like. Thus, the direct orientation of the two buildings to each other that Esherick initially planned would have made functional sense for several years after completion.

The initial west orientation also appears to have been Earle Anthony’s own preference. He visited the site in July, 1956 and, according to Esherick’s records, complained to him that the building was “turned the wrong way” and should face more to the west. By his own account Esherick mollified him by explaining that Eshleman Road would become a pedestrian path and trees would be planted in front of the building to the south. Although Esherick was probably told these things by campus planning staff ultimately neither came to pass, and the bulky block of Barrows Hall rose to the south, across the road which is a dead end, but is still open to both vehicles and parking.

A second aspect of the Pelican Building that changed during the design process was the location of the outdoor terrace. In various Esherick office sketches it shifts back and forth between the southwest and the northwest corners of the site (fig.24). Both locations would have made programmatic sense at the time of the design, by placing the terrace on the west side across from the Art Gallery. It is not clear why it came to settle in the northwest, which is a much shadier location than the southwest and, in consequence, is not well used. Perhaps at the time it appeared best to give the terrace some shelter and intimacy by interposing a wing of the building between it and Eshleman Road.

Peter Dodge noted that the building needed a retaining wall on the north, along Strawberry Creek. Possibly the wall created a situation where a terrace could be sensibly established behind it, in the northwest corner of the site. (Personal interview, Steven Finacom, December 17, 2011)

In addition, the site had (and still has) a large concrete steam line vault located close to the surface. This runs beneath the east (editorial) wing and, just before reaching the chimney, turns west under the library wing and terrace. It may be speculated that the editorial wing of the building is elevated a few steps above the rest of the structures so it could sit above the steam tunnel and avoid the costly expense of relocating it or putting it deeper into the ground. Responding to site constraints imposed by utilities (power, telecommunications, steam, sewer and drainage) is a perennial issue with the design of buildings on the campus.

One of the site features independent of, but associated with, the building structure is a wooden bridge across Strawberry Creek, adjacent to the terrace (fig.34).

George Homsey says he designed the bridge details, which was constructed out of Port Orford cedar and funded by a supplemental gift by Anthony. The bridge was a requirement from Anthony, who wanted the building to connect directly with old Eshleman Hall to the north (using the bridge, pedestrians could then climb a staircase on the north side of the creek, turn right, walk along the north façade of Eshleman, and enter the publications building). Anthony insisted that the bridge be completed before the building dedication and the project was executed very quickly by the Buildings and Grounds staff of the campus. Adjacent to the bridge, one of the campus power substations north of the old Art Gallery is enclosed by a rustic wooden fence that is shown in Esherick’s drawings, although it is not certain if the current fence is the original, or a replacement in the same style.

The pavilion like building came to incorporate several elements associated with Maybeck and/or Esherick. Historian (and retired Campus Planner) Harvey Helfand describes the building as a design that “reflects the influences of Maybeck and the Bay Region style.” (Helfand, The University of California, Berkeley, page 202).

Key features included: blending into a natural setting, and shaping the building to the site—including creek and mature oaks; an open and informal interior layout; the Sono Tube pergola columns (which Esherick had recently used on residential commissions); steel sash windows (characteristic of several Maybeck projects, most famously his First Church of Christ, Scientist, in Berkeley); a large red brick fireplace and prominent chimney cap (which Esherick convinced Anthony to incorporate); a fusion of Mission Revival (red tile roofs) with rustic craftsman features like wide, overhanging, eaves; rough, unfinished, wooden interior walls; exterior walls finished with a rich, rose colored, stucco familiar from various Maybeck projects. The choice of colors—the exterior stucco, and a front door initially painted blue—were also reminiscent of Maybeckian choices, which often ran to reds and blues.

Peter Dodge and George Homsey who both worked for Esherick in the period when the building was designed fully credit it to Esherick, and say that he would not have defined it as representing a particular style. “Joe never talked about aesthetics as style”, Dodge said. Architect Chuck Davis agreed, “He would never answer a question about a style.” (Personal interview with Steven Finacom, December 17, 2010).

In reviewing selections from the office files from the project, they identified some of the sketches as Esherick’s, and some of the detail drawings as done by Homsey or Dodge, an unsurprising fact in the architec-
tural world where the lead architect and / or firm principal will take a direct hand in drawing up the concepts, but the illustration of detailed plans is left to the subordinate staff.

They described the office environment as one where Esherick would give assignments and staff would work on them, but Esherick would monitor and improve the result. The Esherick office was, at that time, at Sixth Street and Powell in San Francisco. Esherick was teaching at Berkeley and would return to the office in the early evening, while the design staff was still there. Esherick would review a central phone log to see what calls had come in during the day and who had responded to them, “then we would get our instructions for the next day”, according to another one of his associates, Chuck Davis. “When I would draw what I thought was his intention he would make the proportions better…” (personal interview with Steven Finacom, December 17, 2010).

Esherick would look over the office work that evening then, if he wanted changes, “The next morning you would get [a note], ‘See me, JE’,” Davis recalled.

One of the signature elements of the Pelican Building, the recurring pelican sculptural motif, was a specific requirement of Anthony who apparently not only wanted to be whimsical but had also come to suspect (quite rightly) that after his death the University would eventually seek to change the use of the building.

To forestall all memory of the California Pelican being erased by future administrations, he specified that visual evidence of the Pelican be included throughout. This included the magazine motto being carved in the mantle over the fireplace (fig.68), and the cast concrete column capitals on the exterior of the building (fig.51).

According to George Homsey, Peter Dodge, and Chuck Davis (later the partners of Esherick in the famed design firm, EHDD), sketches of the capitals in Esherick’s office files for the project look like Esherick’s own work. (personal interview, Steven Finacom, December 17, 2010).

The design was later executed in three dimensions by sculptor and member of the Art Practice faculty Richard O’Hanlon. Esherick kept an extra capital that was not used on the building. Today, in the current EHDD offices, it occupies pride of place, installed on a wall overlooking the entrance lobby and reception area.

Esherick, in contrast, had less use and regard for the two large cast concrete plaques with sculptural reliefs of the pelican that Anthony insisted be installed over the front and back doors to the building (fig.27-28), although he had earlier been willing to accommodate a pelican relief over the proposed west entrance.

Esherick resisted this decorative intervention, attempting to enlist both University administrators and student Pelican staff to lobby Anthony to give up on the idea. Anthony was, however, equally persistent and the plaques were included over objections of the architect.

Anthony also apparently proposed a sculptural pelican weathervane atop the building. Esherick wrote to President Sproul in October 1956 that he had talked with Anthony and “he then said that we should have a weather vane made with a profile of the Pelican on it, and it is hard to believe that I was hearing correctly, but I understood him to say that he wanted the outline of the Pelican in neon so that it would light up at night.” (Esherick to Sproul, Oct. 23, 1953, Esherick papers, CED Archives).

The neon suggestion is not unsurprising, in light of Anthony’s introduction of neon into Southern California. There are, however, no drawings in Esherick’s extensive project files of a neon pelican. There is a drawing of a pelican sculptural weathervane that appears to be designed of found parts, such as door knobs and bits of glass. There is no evidence it was executed.

Anthony was successful in this project to the extent that while the magazine is now long gone, the building is still popularly called the “Pelican Building”, not Anthony Hall, the name which the University later formally attached to it.

Another contributor to the enduring name is the more than life-size bronze pelican that sits in front of the building (fig.28). It was also paid for by Anthony, but was not completed and installed until two years after the building dedication. It is the work of sculptor Frances Rich, apparently a friend of the Anthony family (Earle Anthony and his wife had attended the wedding of her mother, actress Irene Rich). The bronze bird is original except for its upper beak, which was broken off more than once by vandals in later years. In the 1990s campus landscape architect Ortha Zebroski had the beak repaired with a concealed steel insert that has so far resisted further damage (personal recollection, Steven Finacom).

The building itself was completed in time for dedication on the morning of Big Game, November 24, 1956, with Anthony present. The ceremony included a live pelican, the women editor and business manager of the magazine decked out in new dresses paid for by Anthony, speeches, and singing by the Glee Club (fig.5). Anthony was serenaded by the Cal Band the day before, and the University quickly implemented several of his last minute requests, including completion of the bridge over Strawberry Creek, and installation of vines artistically draped on the pergola columns in front of the building.
Anthony’s original concept for the ceremony was later recounted by Professor of Rhetoric Garff Wilson, who would be the long term manager of public ceremonies for the campus. Wilson was enlisted by President Sproul on short notice. Sproul (according to Wilson) said “I’m having trouble with Earl (sic) C. Anthony. For the dedication...he’s proposing to outline the structure in neon, to import Hollywood dancing girls, to release a flock of pelicans, and various other carnival-like activities...I want you to fly to Pam Springs tomorrow and talk Mr. Anthony into accepting a more dignified kind of dedication—which I want you to devise.”

Wilson successfully intervened, suggesting to Anthony that the best approach would be something nostalgic of student life in 1903 when the magazine was created, and the ceremony was toned down to its final version. (Wilson, Unidentified Man, page 104)

The dedication came off successfully, and Anthony was reportedly pleased. Whether he was ever entirely satisfied with the building project, though, is open to question. Esherick hand recorded an interesting note on one of the drawings for the project, after he had taken it to Anthony for his review.

The note reads, JE “Then these drawings are OK?” ECA “Well it looks as though they won’t ever let me have exactly what I want so yes these are fine.” JE “Do you want to sign the drawings?” ECA “No that’s not necessary. How soon can you get it built? 2 months?”

Esherick would later write “Mr. Anthony seems to be rather anxious, but also seems to be quite pleased with what we are doing. I feel quite sure he will be very happy with the building when he sees it on dedication day.” (Esherick to Sproul, October 23, 1956, Esherick papers, CED Archives).

For Esherick, the project was a success—even though there were stressful cost overruns and redesigns, and the difficult dance of accommodation between University officials, strong willed donor and, at least initially, favorite house architect Maybeck. George Homsey says “He was proud of all his stuff. I think he felt good about this building.” (Personal interview, Steven Finacom, December 17, 2010).

The Pelican Building marked not only one of his first institutional buildings, but his first of several design associations with the Berkeley campus. Soon after the Pelican Building project he got two additional commissions. One was directly from the University, for what would become the Harold E. Jones Child Study Center on Atherton Street, south of the campus. The other was a private commission for the independent University YWCA, which would be built south of the Pelican Building, across from the campus edge at Bowditch Street and Bancroft Way. The YMCA commission was briefly in doubt because the ladies of “Y House” had heard (possibly through the grapevine on campus, where several of their spouses taught), that the Pelican Building had been an expensive project. Esherick explained that the overruns were beyond his control.

Both buildings are very characteristically Esherick designs of the era, similar to the iconic private residential commissions for which he is best known, incorporating vertical and horizontal elements, lots of wood, carefully patterned but generous scale, an informal but keen arrangement of indoor and outdoor spaces, trellises and pergolas, and a simple, unassuming, livable, character.

Esherick would also be—in collaboration with Vernon DeMars and Donald Olsen—the lead architect in the mid-1960s for Wurster Hall, the massive concrete headquarters of the new College of Environmental Design, completed in 1964.

By virtue of its height, scale, and controversial modernist character Wurster has come to be the most prominent building in the campus vicinity associated with Esherick, although his other three commissions—Pelican, YWCA, and Child Study Center—are probably more representative of his architectural career and philosophy.

Uses of the Pelican Building

For its entire history the Pelican Building has been a campus facility, owned by The Regents, but also assigned to the management and use of the Associated Students of the University of California (ASUC).

This makes it part of a small family of similarly managed structures including the current Eshleman Hall, and the Martin Luther King, Jr. Student Union. The campus administration does not take a direct hand in the internal operations of these facilities, and has periodically reaffirmed the delegation of direct control over space assignment in the building to the ASUC.

The building has had three primary uses/user groups.

First, in its heyday, it was entirely the headquarters of the California Pelican magazine. The interior spaces were used as initially intended, with an editorial suite on the east (containing desks of editors, as well as a drawing table), a business suite in the main room with office space partitioned off for the business manager and the advertising manager, and a library in the north. During this period, from the late 1950s to the late 1960s approximately, the Pelican made full use of the space.

Editor, associate editor, business manager, advertising manager and art director were paid student staff, according to Dick Corten, who was twice editor of the Pelican as a student in the 1960s. The remainder of the staff was
student volunteers. Corten estimated the core editorial staff included about ten individuals at any given time, along with a larger number of occasional contributors, “aspirants”, and “hangers on” who would frequent the building.

The Pelican, according to Corten, was laid out on a long counter just inside the entrance. After production, the counter was used for sales. Student staff had keys to the building and it did function in the 1960s—and presumably in the late 1950s—as a social center for the staff. Student staff would use the building as a study location, and card games took place in the library. The front door was usually open, Corten said, and it was not uncommon for strangers to come in and ask about the building. [Dick Corten, personal interview, Steven Finacom, December 16, 2010]

By the early 1970s, the Pelican became a less vigorous publication with more intermittent issues, and other student publications began to share the space. Thus, the original student publications purpose continued, but with less emphasis on the student humor magazine.

By the mid-1970s the Graduate Assembly was evolving as a vigorous wing of the ASUC. All students—graduate and undergraduate alike—then and now were members of the ASUC and participated in electing ASUC officers. But politically active graduate students chafed at the perception that few elected officers of the ASUC were graduates and the focus of the organization was perceived to be on undergraduate interests.

The Graduate Assembly was formed as a government-within-a-government (but still a part of the ASUC, not an independent entity), complete with its own governing council composed of elected delegates from various graduate programs, services and activities, and part time and career staff. By the mid-1970s the Graduate Assembly was housed in University-controlled space in Campbell Hall but was agitating for better quarters.

A prolonged controversy within student government ensued. The details are not necessary to reproduce here, but in essence the Graduate Assembly wanted a substantial allocation of ASUC-controlled space for its own offices and operations. Debate—and an ASUC ballot initiative—resulted in the late 1970s. Two space options that emerged were the 5th floor of Eshleman Hall, and the Pelican Building. The controversy continued for several months, reflected in frequent discussions, reports, and proposed actions at ASUC Senate meetings.

Ultimately, the ASUC Senate decided that the Pelican Building should be assigned to GA use rather than a portion of Eshleman Hall. This apparently took place in 1978, over the protests of the Pelican staff.

It appears that a portion of the building was initially left for Pelican usage in the early years of this new arrangement. By the mid-1980s the Pelican still occupied “a corner of the building” and the Pelican was only “occasionally published”. [Wilson, Unidentified Man, page 104]

Within a few years, despite intermittent efforts to get out new issues, the Pelican was effectively defunct and the Graduate Assembly was the sole occupant of the building.

(The Pelican was replaced, at least in spirit, by a new student humor magazine, the Heuristic Squelch, which now occupies a similar, though less prominent, cultural niche on campus as the Pelican did, satirizing student and campus life and general culture in a magazine format with brief articles, blurbs, and visual features.

This has remained the case for the past three decades, meaning that the Graduate Assembly has now used the building for longer than the structure was exclusively occupied by student publications and that Graduate Assembly use has become an important part of the cultural heritage of the facility.
SITE AND SETTING

The Pelican Building site is situated between a campus roadway, Eshleman Drive, on which the building fronts, southward; and a branch of Strawberry Creek, which runs east-to-west across the rear of the site and directly adjacent to the building's northernmost extent. The site slopes moderately downward south-to-north, from the line of the street to the course of the creek. Relating to the street, the front half of the Pelican Building site is essentially an open yard with a lawn, several individual trees, and planting beds adjoining the building. A paved, central entry path bisects the front yard. In the east front yard stands a bronze sculpture of a Pelican, the namesake of the building and the publication. Rearward, relating to the creek, the site is appropriately wooded.

This outline illustrates primary characteristics of the site: an open, basically formal and cultivated site at the front; and a natural, wooded site at the rear. The building itself stands between the clearing and the woods.

Other parts of the site are its east and west side yards. Its east yard, minimal and constrained, is essentially an asphalt paved, informal pedestrian pathway running directly along the building towards a footbridge crossing the creek. Alongside and to the east of the front portion of the building, the path and the building are separated by an on-grade planting bed with low shrubs, ground cover, and a large oak tree. In the front yard, that pathway forms the eastern edge of the site.

Another pedestrian path forms the western edge of the site. This pedestrian path is part of a cross-campus route that traverses directly past the west side of the Pelican Building, separated by a raised planting bed at the front, then widening—in order to circumnavigate a very large oak tree—to directly adjoin the low wall of the building's raised rear terrace. This western path then links to another footbridge crossing the creek from south to north. The western footbridge is a part of the Pelican Building site, as it was conceived of and built in conjunction with the building.

In addition to this footbridge, a set of tall wooden fences line the outside (west) edge of the western pathway across from the Pelican Building's rear terrace. While these fences define the utility yard at the rear of the Old Art Gallery/Powerhouse building, they too were designed and built in conjunction with the Pelican Building, so are also components thereof.

Finally, with respect to its setting, the Pelican Building was constructed when the Old Art Gallery was in use. At the time of the building's conception, those two buildings essentially shared the site that lies between the two. That strong contextual relationship was not substantially realized, and was further diminished with the closing of the Old Art Gallery, c.1970. Even so, a shared relationship remains, however circumstantial.

In summary, the site has two primary characters, front and rear. Otherwise, each of its four “yards” have distinct characters. Significant site features and materials include:
In summary, the site has two primary characters, front and rear. Otherwise, each of its four “yards” have distinct characters. Significant site features and materials include:
- The front lawns and central pathway
- The pelican sculpture at the east front yard
- The two oak trees, one to the east and one to the west
- Landscaped planting beds
- The western footbridge

**BUILDING EXTERIORS**

Whereas its site has several aspects relative to its four distinct orientations, the Pelican Building has quite uniform design characteristics, almost regardless of orientation. It is a compact, single-story building in several interconnected parts, including:
- A longitudinal, pavilion-like, gable roofed building at the front
- A perpendicular rear wing with gabled roof
- A forward projecting entry porch under a canopied roof gable
- A trellised colonnade across the front
- A raised rear terrace with another trellised colonnade across the rear

Architecturally, the building is of two eras of design. It is, primarily, Craftsman-style, thus representing perhaps the last of that architectural legacy, which was emblematic of the architecture of California during the first third of the 1900s. The materials and features that render it a Craftsman-style building are its redwood and Douglas fir timbering, framing and trimwork; the artistically modeled stucco wall finish; the use of residential steel windows; clay tile roofing; and cast stone ornamentation.

Otherwise, the Pelican Building is a work of the mid-20th century. Though the features that make it so are less dominant, they are nonetheless prominent, primarily being the concrete columns at the front and rear colonnades. It is through these essential elements that the overall building is seen, so their character is important to the building’s perception. Without these Modern-style columns, the building would appear to be of an earlier era. With them in the foreground, the Modern era is present and, yet, does not mask the craftsmanly building beyond. So it is a building that strongly represents two eras, whether or not such dualism was intended.

Accentuating this dichotomy is the additional fact that the building exterior has grown into its site, and vice-versa, so the structure is partially concealed by its landscape.

An elevation-by-elevation description of the building is not necessary, since most of the exterior building assemblies, materials and elements are common to each elevation. Primary and typical exterior characteristics are:
- Redwood and Douglas fir timbering, framing and trims
- Stucco wall finishes
- Steel window units with redwood sills and trim, and stucco-clad aprons below
- Concrete foundation and retaining walls and curbs
- Exposed wood decking at underside of roof eaves
- Clay tile roofing
- Copper roof gutters and leaders

Elevation by elevation, each of these material assemblies are variously repeated within the building’s expressed structural geometry of predominately 8 foot wide bays (which is carried into constructed exterior spaces as well as throughout the interior). Thus, the front structure is 8 bays long by 3 bays deep; the rear wing 3 bays deep by 2 bays wide; the front colonnade 6 bays long by 1 bay deep, separated from the building by the depth of 1 bay, and with a 1 bay wide by 2 bay deep front entry porch intersecting the colonnade 1 bay in from its east end; lastly, the rear terrace is four bays wide by 3 bays deep.

The building plan likewise fits neatly within this structural grid, though without symmetrical arrangement, as each discrete part is offset. Thus, the entry axis is one bay east of the centerline of the front structure. The rear wing projects two bays to the east of the front structure’s center, leaving a void in the west corner at the rear, which the terrace fills.

Large steel window units form an important pattern in this design. Their scale, which is nearly floor to ceiling and a full bay wide, and their frequency, filling 14 of the 25 exterior wall bays (excluding 2 bays with door openings and one with a chimney), are what gives this building its pavilion-like quality. Window units are employed at each exterior wall excluding the north elevation at the rear wing, which is the rear-most wall of this structure, and which is a stucco clad façade, yet with timbering that repeats the overall structural geometry. The remaining 8 solid wall bays are likewise stucco clad, 3 of which stand contiguous to one another at the west end of the front elevation.

Additionally, there are several distinctive, exterior assemblies, materials and elements:
- Concrete columns with redwood trellises (at front and rear colonnades)
• Brick chimney at east elevation of rear wing
• Gable-shaped steel window units in the upper walls at each end of the front structure
• Cast stone ornamentation, including 2 two entry plaques above the exterior doors, and 26 pilaster capitals (6 of which are 2-sided corner capitals)
• Blue-stained wood band at juncture between walls and roof eave
• Lighting with fiberglass lenses in ceiling of entry canopy
• Aggregate paving at rear terrace

Altered and added exterior features:
• Solid, flush wood doors (at front entry)
• Door hardware and thresholds (both front and rear exterior doors)
• Concrete landings (outside both exterior doors)

Missing exterior features:
• Wood bench at east end of front colonnade
• Light fixtures

BUILDING INTERIORS

The building exterior translates directly to the interior via the geometry of its exterior walls and its timber post-and-truss structure. In this compact building, largely open at the interior with the exception of two small interior enclosures housing toilet and service spaces, the exterior walls directly form the interior spaces, while the building structure translates from outside to inside, essentially forming both. The largely open interior also reflects the primary exterior volumes of the main building and its projecting rear wing.

From the front door, the entry axis routes straight through the front structure, which primarily houses office space — into the rear structure, which houses a library/meeting space.

The front structure is subdivided into two office areas, a main office to the west and an upper office to the east. These areas are separated by two enclosed rooms along the east side of the entry path, between which another path routes to the east office area. Semi-divided by the toilet and service room enclosures, as well as elevated several steps up from the main floor level, the eastern (upper) office space is discrete from both the western half of the front building and the rear wing. So the interior is divided into these three primary spaces, plus the several smaller spaces within the enclosed toilet and service spaces.

Original and existing interior features and materials include:
• Exposed wood timbers and framing, trusses, wood wall boards, roof decking, stair handrails, door and window casings, and miscellaneous trim
• Wood and glass/plexiglas partition
• Built-in wood cabinets (at upper office), wood mantelpiece and shelving (at rear wing)
• Flush and blind wood doors and hardware (at north toilet room and both service closets)
• Brick masonry fireplace, chimney and hearth
• Metalwork, including exposed truss plates, and fireplace hardware
• Ceramic tile wall finishes (at toilet rooms)
• Radiant baseboards
• Built-in fluorescent lighting with plexiglas lenses (throughout front office and rear meeting areas)
• Pendant light fixtures with egg-shaped globes (at upper office area)
• Drinking fountain, stainless steel
• Bathroom fixtures and metal partition (at north toilet room)
• Flush, wall mounted electrical outlets and switches

Altered and added interior features and materials:
• Window blinds
• Resilient flooring (throughout) and bases (at walls without radiant baseboards)
• Flush wood door, hardware and threshold (at south toilet room)
• Flush wood door, hardware and frame (at wood office partition)
• Vent grille (at blind door to telephone closet)
• Bathroom fixtures, accessories and lighting (at south toilet room)
• Miscellaneous, surface mounted interior equipment (ceiling fans, exit signs, pull boxes, strobes, alarm equipment, thermostats, electrical switches and receptacles, conduits and wiring)
• Telephone trunk line (at southeast corner rear wing)

Missing original features:
• Window blinds and draperies
• Globe at one pendant fixture
• Lenses at built-in fluorescents (selectively)
Fig. 7: Pelican Building
Southeast Building Corner looking towards Front (MH-2010)
Fig. 8: Pelican Building
Front Yard, Colonnade and Building Elevation (MH-2010)

Fig. 9: Pelican Building
Rear Terrace and Colonnade (MH-2010)

Fig. 10: Pelican Building
View from Meeting Room to Rear Terrace
This HSR section addresses the Pelican Building’s potential historical significance, first analyzing significance per the California Register of Historical Resources (CRHR). Thereafter, historic significance is summarized, and the historic property is further evaluated to identify the relative significance of character defining areas and features. Under the CRHR, a resource (building, site, structure, or object) may be significant on the basis of one or more of four criteria:

1. It is associated with events that have made a significant contribution to the broad patterns of local or regional history or the cultural heritage of California or the United States.
2. It is associated with the lives of persons important to local, California or national history.
3. It embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of a master or possesses high artistic values.
4. It has yielded, or has the potential to yield, information important to the prehistory or history of the local area, California, or the nation.

The Pelican Building’s potential historical significance is assessed in the following order:

A. Master Architect
B. Historical Associations
C. Architectural Distinction

HISTORIC RESOURCE EVALUATION

Master Architect (CR Criterion 3)

The Pelican Building is the work of a master architect, Joseph Esherick.

In summary, Mr. Esherick (1914-1998) practiced architecture in the San Francisco Bay Area from 1938-1996, and where he established a succession of firms. First, in 1946, his own — Joseph Esherick, Architect. Then, in 1972, Esherick, Homsey, Dodge & Davis (EHDD). Esherick was also a faculty member of the School of Architecture at the College of Environmental Design at UC Berkeley from 1952-1985.

The following is a biographical sketch of Esherick that introduces the Joseph Esherick/EHDD Collection at the UCB’s Environmental Design Archive.

"Joseph Esherick was born in Philadelphia in 1914, and graduated from the University of Pennsylvania with a degree in architecture in 1937. He moved to San Francisco the following year, where he worked part-time for structural engineer Walter Steilberg before securing a full-time position in the office of Gardner Dailey.

Esherick served in the Navy during World War II, then opened his own firm in San Francisco in 1946. His early work, primarily residential, was influenced by William Wurster and Gardner Dailey, and built upon their expression of the Bay Area Tradition.

In the 1960s Esherick’s firm began to take on larger projects, such as The Cannery (San Francisco, 1965-67) and Stevenson College
at the University of California, Santa Cruz (1965–66). Esherick also designed demonstration houses for The Sea Ranch (1965–67), a planned community noted for the sensitivity of plan and design to the natural elements of the site. Esherick established a partnership with George Homsey, Peter Dodge, and Charles Davis in 1972, and the firm became Esherick, Homsey, Dodge, and Davis (EHDD).

In addition to his work with the firm, Esherick was an educator and consultant. He taught at University of California, Berkeley from 1952–1985 and served as the Dean of the School of Architecture for the university from 1977–1981. Esherick established an independent consulting firm in the early 1980s. His projects included speaking engagements and committee memberships as well as design consulting. In this capacity he served on the Professional Consulting Group for The Sea Ranch twenty years after the community's original design. He also delivered a number of lectures on topics such as architectural education, the use of computers in design, and the Bay Area Tradition.

Esherick was awarded the American Institute of Architect's Gold Medal Award in 1989. He continued working as senior design principal at EHDD until his death in 1998.”

(From: http://www.oac.cdlib.org/data/13030/89/ft35800389.pdf)

Despite his long association with the University alongside his professional work, the Pelican Building is one of two on campus structures of Esherick's for the University, and the only one under his own banner. (The other, Wurster Hall, was in association with several of his peers, Demars and Olsen.)

Historical Associations (CR Criterion 2)

The Pelican Building also has several associations of importance.

Earle C. Anthony (1880-1961) was the founder, in 1903, of a campus humor magazine, The California Pelican. In 1955, Anthony was the benefactor of the Pelican Building. He was also an important person in and pioneer of several early 20th-century California enterprises, including automotive sales and radio.

The Pelican Building also has an association with Bernard Maybeck (1862-1957), another master architect of the S.F. Bay Area, who practiced and taught architecture from his base in Berkeley from the late 1800s to the mid-1900s. Maybeck is eminent to that period of Bay Area architecture, and his remaining buildings are considered several of the milestones thereof.

Maybeck's name is directly associated with the Pelican Building, having been assigned the role of consultant to Esherick, a role under which his name appears on early drawings. However, it is also evident that Maybeck did not play a substantive role in the design, and that the completed work is attributable to Esherick. Nonetheless, Maybeck's association and influence may be generally witnessed in the building, which may best be described as Maybeckian in style. Its architecture appears to be heavily influenced by the work of Maybeck, and specifically Maybeck's First Church of Christ just south of the Berkeley campus. While of different typologies (and eras), the two buildings share many traits, including redwood timbers, deeply overhanging roof eaves, steel sash, cementitious coatings, and concrete columns.

The University of California at Berkeley is a third important association. Though this one is an institution rather than a person, the reality is the University played a central role in the support for and the development of the building, beginning with the generous provision of a site. Members of the University that officiated and participated in the project included President Robert G. Sproul, Chief Architect R.J. Evans, Architect Louis DeMonte, Landscape Architect Douglas Bayliss, and Artists Richard O'Hanlon (cast stonework) and Frances Rich (pelican sculpture).

Architectural Distinction (CR Criterion 3)

The architecture of the Pelican Building is noble and of fine quality materials. Based on architectural records, it is evident that the planning and design effort was focused and careful, with engaged clients and architects. Yet, the building has limited distinction as a period work, since it minimally manifests the time of its inception and creation. Rather, it is a work much the more reminiscent of the preceding period of Bay Area architecture. In fact, it is a very late and possibly the last example of the earlier period of arts and crafts influence. Nor is there another of this kind of design in the Esherick oeuvre, whose work throughout his career explored modern spaces and forms. At the same time he was designing the Pelican Building, other works that have similar treatments — expressed orthogonal structural geometries, pavilion-like plans, deep overhangs, trellised loggias — were designed in a Modernist mode. In that context, the Pelican Building can be considered conventional, in that it followed tried-and-true characteristics rather than exploring the design pursuits of its day.

As author Mark Treib has also concluded, the building is an homage to Maybeck and Maybeckian traditions, perhaps rightly so, since Maybeck was directly involved. However, there are substantial works of Maybeck on campus as well as directly nearby, in comparison to which the modestly programmed and domestically scaled Pelican Building is not an equal. Moreover, in the work of Esherick, this building is out of character and, thus, a novelty, yet not without historical and architectural value and interest.
This critique is not intended to overly discount the property's historic architectural value, but instead to acknowledge the value of its conventional architecture relative to the primary historical importance of its architect and of its historical associations.

Summary of Historic Significance

A primary basis for a finding of historical significance is that it is a work of the late, highly important, San Francisco architect, Joseph Esherick. In addition, it is the only one of his individual works on the campus of U.C. Berkeley, where he taught architecture for more than three decades, and where he served as Dean of the School of Architecture in the late-1970s.

Another primary basis for significance are several historical associations between the Pelican Building and persons and organizations of historical importance: the first being an association to the founder of The California Pelican, Earle C. Anthony, who went on to become a pioneering and prominent figure in automotive and radio businesses. The second important historical association is to the institution of The California Pelican, a student publication founded by Anthony in 1903, and which survived until 1988.

A secondary basis for a finding of historic significance is the Pelican Building’s architecture, a mid-20th century design blending Craftsman and Modern styles and elements.

Historic Resource Requirements

Historic resource designations confer certain obligations to the owners and stewards of such resources.

In general, a property that is listed in or formally determined eligible for the NRHP is afforded certain protections as well as incentives. Within the federal regulations, the “effects of listing” include the requirement that federal and state agencies “undertaking a project having an effect on a listed or eligible property” must allow for “comment pursuant to section 106 of the National Historic Preservation Act...” (from CFR, Title 36, Part 60, Section 60.2 Effects of Listing).

While federally owned resources require the federal Section 106 review, State owned resources such as the Pelican Building are reviewed pursuant to Sections 5024 and 5024.4 of the California Public Resources Code. Section 5024 requires consultation with the California State Office of Historic Preservation (OHP) when a project may impact historical resources located on State owned land.

Additionally, the California Environmental Quality Act (CEQA) requires that public agencies consider the effects of their actions on historical resources listed or eligible for listing in the CRHR. In the context of proposed projects, such consideration may require environmental review, but at the very least requires a determination of effect.

Under the California Environmental Quality Act (CEQA), historic resources are an integral component of California's environment. Under CEQA, jurisdicntial undertakings that propose changes to identified and eligible historic resources must take into consideration the potential effects of any such actions on the resource. Generally, if undertakings and actions are found to follow the Secretary of the Interior's Standards and Guidelines for the Treatment of Historic Properties, then an exemption from further environmental evaluation may be applicable. Conversely, if proposed actions cannot be found to meet the Standards, then further environmental assessment may be required.

While CEQA does not provide specific protections to historic resources, it provides for a public process whereby actions are assessed in order to identify potential adverse affects on historic properties. If adverse effects are identified, the CEQA process seeks the development of measures that may mitigate affects in so doing providing procedural layers of protection to historic resources.

Thus, actions related to the care and alteration of identified historic properties must take into consideration its identified historic significance, and with specific regard to protecting character defining spaces, assemblies, materials, and elements, which are defined in detail in the pages of this HSR.

As the Pelican Building is State owned, the jurisdiction having authority over discretionary actions (such as proposed projects) are the State and the University of California (UC). Thus, planning and building permit authority do not reside at the local jurisdiction, the City of Berkeley. Nevertheless, the City is regularly given the courtesy of reviewing and commenting on pertinent UC projects.

Assessment of Historic Areas and Elements

An historic preservation assessment intends to establish a framework for treatment of an historic property by zoning the property and building into logical areas, primarily based on the integrity of original use and design — with integrity meaning that a critical mass of essential uses and physical features are intact and visible — as well as on the degree of public access.

The delineation of a property into historic zones establishes the differences between more and less significant exterior and interior areas. Exterior and interior areas
are herein divided into three historic zones—Very Significant, Significant and Contributing; and a non-historic zone—Non-Contributing.

An historic resource, whether a district or an individual building, is an integrated whole consisting of site and landscape, building exterior and interior spaces, features and materials. That resources are so considered is not to say that each landscape and building entity is equally historic. Historic properties are generally considered from the outside in, and likewise looked at from the perspective of public versus private, with greater significance granted to the former based on the understanding that historic resources generally benefit the public over-and-above private parties and individuals. One can, therefore, generally conclude that formal and public exterior spaces and building elevations are of the greatest significance, with significance receding towards the rear of a property, as well as towards the interior—increasingly so with more and more utilitarian and back-of-house uses and their spaces. This method of interpretation parallels the way that landscape and architectural design acknowledge the relative importance of public place and form, resulting in greater formality and consequence at primary public spaces and facades, versus simplification and utility at service areas, which relatively few might appreciate, and where utility is the expedient.

It is therefore understood that there are degrees of historic significance with respect to any given historic resource, regardless of scale. As well, that such degrees are measured by a general grading system that implicitly identifies exterior landscapes, elevations, spaces and features as more significant and thus of greater sensitivity than interior spaces.

The intent of historic zoning is to prioritize an historic property by defining zones of greater and lesser historic significance and, therefore, greater and lesser sensitivity to maintenance, alteration, rehabilitation or change. Relative significance is important in the context of planning for the future of historic resources. Giving consideration to the relative importance of one space to another, or one material to another, allows for the prioritization of individual landscapes, buildings, spaces, elements and materials. Such an assessment defines what is most important about a resource, and thus what deserves the greatest attention with respect to preservation. Conversely, designating relative significance allows for the consideration of what is of lesser significance and least sensitive to change, thus suggesting where necessary alterations or additions may best be focused.

It is not the intent of this preservation planning effort to prohibit alterations or additions to this historic property. All active properties necessarily undergo change in order to maintain uses, or adapt new uses in order to sustain their existence. Such actions as are required to maintain and sustain historic properties are allowed under the guidance of the Secretary of the Interior’s Standards.

Historic Preservation Zones are further described below, followed by floor plan diagrams applying these zoning principals to the Pelican Building.

**Very Significant Zone**

The Very Significant zone consists of the most historically important and intact exterior areas and their identified elements. Very Significant spaces are primary to the significance of this resource due to the integrity of the original design, along with their formality and exposure.

Very Significant areas and elements are highly sensitive to alteration, so shall be retained and preserved. At such locations, every effort shall be made to restore elements and materials to match their original locations and forms. Deteriorated materials shall be repaired rather than replaced. Where replacement is necessary due to extensive material deterioration, failure or loss, replacement materials shall match the original materials and forms.

New additions and alterations to Very Significant areas are discouraged but may be allowed if they strictly meet the Secretary of the Interior’s Standards. In particular, new work shall not destroy identified historic fabric, and is also recommended to be modestly different from the historic character, elements and material while, at the same time, being compatible. Where past alterations have been made that are identified as non-historic, such alterations may be removed or further altered based on the same standard of treatment.

**Significant Historic Preservation Zone**

Exterior and interior areas that are of secondary importance to the historic property, or of less public prominence than Very Significant zones, or potentially very significance spaces that have suffered past alterations affecting their significance, are herein identified as Significant.

Like the Very Significant zone, Significant spaces, elements and materials are recommended to be retained and repaired rather than replaced, and missing or altered historic features may be restored. Where past alterations have been made that are identified as non-historic, such alterations may be removed or further altered based on the Secretary of the Interior’s Standards.

New additions and alterations to Significant areas may be allowed, but must be guided in order to strictly meet the Secretary of the Interior’s Standards for the Treatment of
Historic Properties. In particular, new work shall not destroy identified historic fabric, and is also recommend- ed to modestly differ from the identified historic char-acter, elements and material while, at the same time, being compatible.

**Contributing Historic Preservation Zone**

Exterior and interior areas of tertiary importance to the overall historic resource, or of less public prominence than Significant zones, or potentially significant spaces that have suffered past alterations affecting historic signif-icance, are herein identified as Contributing.

Like the Significant zone, Contributing exterior and inte-rior spaces and features are recommended to be retained and preserved, or repaired rather than replaced, and miss-ing or altered historic features may be restored. Whereas preservation is the goal within Significant zones, rehabili-tation is recommended within Significant areas.

**Non-Contributing Zone**

Non-Contributing areas are primarily areas or spaces, exterior or interior, that may be original to the resource but are of tertiary importance, or are areas and spaces that have been altered so that their historic identity is absent, or else are additive alterations. Non-Contributing zones are not specifically limited by preser-vation recommendations. Their uses and elements may be altered or changed, but not without consequence to the historic property and, therefore, the Standards gen-erally apply. Where alterations have been undertaken, their removal is allowable.

**SUMMARY OF SIGNIFICANT FEATURES**

The following is a summary of significant materials and assemblies (not including non-historic materials).

**Site and Landscape**

**Very Significant:**
- The front lawns and central pathway
- The Pelican sculpture at the east front yard
- Front colonnade and walk

**Significant:**
- Front entry walk
- Rear colonnade
- Two oak trees, one to the east and one to the west
- Landscaped planting beds at front and west side

**Contributing:**
- On grade planting beds at east side

- East and west side walkways
- Rear terrace (excepting colonnaded portion)
- Western footbridge

**Building Exteriors**

**Very Significant:**
- Brick chimney at east elevation of rear wing
- Gable-shaped steel window units in the upper walls at each end of the front structure
- Cast stone ornamentation, including 2 two entry plaques above the exterior doors, and 26 pilaster capitals (6 of which are 2-sided corner capitals)
- Blue-stained wood band at juncture between walls and roof eave
- Lighting with fiberglas lenses in ceiling of entry canopy

**Very Significant and Significant** (location dependent — see attached diagrams):
- Redwood and douglas fir timbering, framing and trims
- Stucco wall finishes
- Steel window units with redwood sills and trim, and stucco-clad aprons below
- Concrete foundation and retaining walls and curbs
- Exposed wood decking at roof eaves
- Clay tile roofing
- Copper roof gutters and leaders
- Concrete columns with redwood trellises (at front and rear colonnades)

**Contributing:**
- Aggregate paving at rear terrace

**Building Interiors**

**Very Significant and Significant** (location dependent — see attached diagrams):
- Exposed wood structural frame, including wood tim-bers and framing, trusses, and roof decking
- Brick masonry fireplace, chimney and hearth
- Metalwork, including exposed truss plates, and fire-place hardware

**Significant:**
- Interior wood work, including wood wall boards, stair handrails, door and window casings, and misce-laneous trim
- Wood and glass/plexiglas partition
- Radiant baseboards
Building Interiors - cont.
• Built-in wood cabinets (at upper office), wood mantelpiece and shelving (at rear wing)
• Flush and blind wood doors and hardware (at north toilet room and both service closets)
• Ceramic tile wall finishes (at toilet rooms)
• Built-in fluorescent lighting with plexiglas lenses (throughout front office and rear meeting areas)
• Pendant light fixtures with egg-shaped globes (at upper office area)
• Drinking fountain, stainless steel
• Bathroom fixtures and metal partition (at north toilet room)
• Flush, wall mounted electrical outlets and switches
Fig. 13: Pelican Building Floor Plan
Illustrating Historic Preservation Zones

Fig. 14: Pelican Building Front (South) Elevation
Illustrating Historic Preservation Zones
Fig. 15: Pelican Building Rear (North) Elevation (top); West Elevation (middle); and East Elevation (bottom)

Illustrating Historic Preservation Zones
THE PELICAN BUILDING HSR

RECOMMENDATIONS

This HSR section summarizes recommended rehabilitation and preservation treatments for the property and building in the following order:

General
• Secretary of the Interior's Standards
• Historic Resource Protection

Reuse/Rehabilitation
• Building Uses
• Site and Building Accessibility
• Building Structure

Material Recommendations
• Landscaping and Sitework
• Building Exterior
• Building Interior

Building and Energy Systems
• Heating
• Exterior and Interior Lighting
• Wiring and Controls

Illustrated plans and elevations delineating and prioritizing historically significant areas and elements also accompany this section.

GENERAL RECOMMENDATIONS

Per the above evaluation of historic significance, the Pelican Building appears eligible for listing on the National Register of Historic Places (NR) and the California Register of Historical Resources (CR). The property is, therefore, an historic resource under the California Environmental Quality Act (CEQA). As a result, actions and undertakings that would affect the building and its property, while not prohibited, are required to be assessed to determine if any such work would result in any adverse affect on the historic resource. In this way, CEQA recognizes the value of cultural and historical resources to the California public, and thereby provides a general level of protection.

Under CEQA, historic and cultural resources are integral to California's environment. Projects that may cause an effect on an historic resource would likewise cause an effect on the environment. If a proposed project is determined to meet the U.S. Secretary of the Interior's Standards for the Treatment of Historic Properties, then any affect is generally considered less than significant. With respect to most historic properties, the Pelican Building included, the most applicable of the treatment standards are the Standards for Rehabilitation, as follows:

The Secretary of the Interior's Standards for Rehabilitation:

1. A property will be used as it was historically or be given a new use that requires minimal change to its distinctive materials, features, spaces, and spatial relationships.

2. The historic character of a property will be retained and preserved. The removal of distinctive materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

3. Each property will be recognized as a physical record
3. Each property will be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or elements from other historic properties, will not be undertaken.

4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

6. Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.

7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

9. New additions, exterior alterations, or related new construction will not destroy historic materials, features, and spatial relationships that characterize the property. The new work will be differentiated from the old and will be compatible with the historic materials, features, size, scale and proportion, and massing to protect the integrity of the property and its environment.

10. New additions and adjacent or related new construction will be undertaken in a such a manner that, if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

**Protection**

In the context of historical building rehabilitation projects, selective protection actions are required throughout the planning, design, documentation and construction processes. During the planning and design stages, selective protection actions are specific to identifying what is significant about the resource, in so doing establishing a list of historical forms, features and materials that are recommended to be protected throughout the remainder of the process, including during design, when the intention of retaining the identified elements and assemblies begins. This HSR thus initiates required protection measures by identifying the historical character and characteristics of the historic structures.

During design and documentation efforts, specific protection requirements are recommended to be furthered by the development of historic building protection plans and specifications. Finally, during construction, protection measures take physical form — with the use of identification signs and physical barriers — but management and procedural processes dedicated to protection measures are of equal importance.

**Selective Protection — Recommendation**

In the context of any proposed work on the historic resource, maintenance included, it is recommended that all identified character defining spaces, assemblies, materials and features be retained and protected from damage or loss, as well as from any alteration that would adversely affect identified spaces and materials.

The following detailed procedures are recommended whenever the removal and reinstallation or in-kind replacement of historic materials, elements and assemblies is required:

- A photographic record documenting the existing condition at all locations where historic materials and assemblies are required to be removed.
- A plan for the removal and salvage of historic materials and assemblies, including methods for protecting, storing, monitoring and tracking each piece or element while removed from its original location, including schedules and tracking forms.
- Dimensioned drawings where removal of historic building and structural materials and assemblies are to be removed and reinstalled or reconstructed, so that reinstallation or replication can occur.

**REUSE/REHABILITATION RECOMMENDATIONS**

As property and building use are centrally important historic factors, site and building uses and potential reuses are addressed first.

**Building Uses**

Originally an office building for the making of a journal, the Pelican Building originally housed office spaces across the front structure and a library/meeting room with a central fireplace filling the rear wing. Though no plans or images of the original arrangement of specific uses and their furnishings have been located, given the layout along with numerous full-height windows, the spaces were likely not intended to be densely furnished at the perimeter walls, but centrally furnished with circulation along the walls instead.
On axis with the entry, circulation passes directly through the front structure from the entry to the rear wing. Another centralized path in the east-west direction bisects the two rest room/service volumes in the front structure, ascending to the raised floor area at the eastern end. And at the west end of the front structure, the current wood and glass partition was original, and which divided off semi-private office areas.

At the exterior, the front [south] lawn spaces predate construction of the Pelican Building, with an entry path then created between the sidewalk and the front door. These lawns are formal spaces, their formal character reinforced by the stately pelican sculpture gracing the east front lawn (a curious and unique statement on a campus otherwise filled with bear sculptures).

Across three-quarters of the building front is a trellised colonnade that is freestanding except for the roofed portion that forms an entry portico. This east-west colonnade formalizes a circulation path connecting the building entry to a cross-campus pathway at the building's west side. Originally, a built-in bench sat in niche formed by low retaining walls at the east end of this colonnade.

Raised planting beds integrated into the base of the building stand along the western half of the front (south) façade — between the colonnade and building — and wraparound the west end of the structure. On grade planting beds are situated at the east end of the front structure, and which also wraparound its east end.

A structured outdoor space in the form of a raised terrace occupies the rear (north) corner behind the western half of the front structure and alongside the rear wing. This informal, exterior gathering space may be accessed from the cross campus path to the west, or from an entry and exit door at the rear wing. Another detached, trellised colonnade stands at the northern-most third of the terrace space.

Strawberry Creek flows directly behind the building, and which is crossed by a wooden footbridge on the cross campus path to the west. This bridge was in fact originally designed and built as part of the Pelican Building project. Another footbridge of more recent vintage (?) recrosses the Creek to the northeast corner of the Pelican Building site, from which a paved path tracks around the east side of the building then across the front lawn to the Eshleman Road sidewalk.

In the path at the northeast corner of the site and structure are a sequence of access hatches, evidence of a substantial and original site feature: steam tunnels. And at the time of its construction, the Pelican Building site had a few mature trees surrounding it, and which were retained.

At the exterior, the existing site retains its original patterns (Eshleman Road and its sidewalk, Strawberry Creek, Art Gallery/Powerhouse, substation and subsurface steam tunnels), uses (informal and formal — i.e., lawns and planting beds) and activities. Physical changes are limited to the removal of the bench at the east end of the front trellis, and to the early addition of the northeast footbridge and its pathway. More natural changes to the site include the maturing (and selective loss and replacement) of the landscapes planted along with the building, and the maturing (and selective loss) of trees original to the building site.

With respect to the interior, primary original patterns of use have also been retained, with a similar arrangement of offices at the front structure and a study and meeting space at the rear wing. Still, substantial change is evident, as the interior uses have grown out of the confines and characteristics of their given spaces. Moreover, it is a building unequipped to accommodate or otherwise conceal any overflow of furnishing, equipment or storage. To the extent, for example, that the original space in the rear wing has essentially been converted into what looks most like an office kitchen-work area, complete with a central table. While this conversion may be appropriate, all of the necessary equipment stands exposed in the room, even directly alongside the fireplace. So the original library space now feels incongruous and overcrowded.

Use Recommendation:

While the types of uses are appropriate, given the forms and confines of the extant interior spaces, alterations amounting to the reorganization and reduction of use is recommended. The interior layout, in particular the office spaces of the front structure, should be reorganized, perhaps best positioning office furniture in a central pod rather than at the walls. The space in the rear wing should also be reorganized. As the office-kitchen use may prevail as the best use of this space, the space should be replanned and redesigned accordingly.

Alternatively and perhaps preferably, the building's intensively used office areas could be converted to more communal uses such as meetings and conferences, even if the addition of some physical separations are required.

In order to reuse the interior space more efficiently, removal of one of the toilet room volumes would be allowable, though which would require a more detailed understanding of the consequences at surrounding finishes.

(For access issues and recommendations specific to the interior, see below.)
Accessibility Recommendations

Site

Several paved pedestrian paths enter and pass by the Pelican Building site. To varying degrees, these paths may not meet site accessibility requirements. The rear terrace is raised five steps above the west path and is accessible only via these exterior steps or through the building. As this space is attached to and primarily extends the interior space, full access from the interior should be sufficient.

Building

The building is accessible via an accessible front entry landing and doorway. The rear terrace is likewise accessible from the interior via an accessible doorway and landings.

Two of the three primary building spaces are accessible (disregarding furnishings, etc.) as they are located at the accessible floor level. The eastern end of the front structure is raised three steps above the accessible floor level, and only accessible via those steps.

One of the existing bathrooms has been recently made accessible, while the other to the north side of the stair, along with janitor's and telephone closets, are the largely unaltered original spaces.

Site and Building Accessibility Recommendations: There would not appear to be any potential adverse affects on the historic property or building were exterior paths to be replaced in part or in whole in order make them fully accessible, including the possible addition of handrailings and lighting, as required.

As the current exterior doors and their landings do not appear to be original or have been modified, if any egress door elements do not meet code, there are no specifically historic characteristics or features that will restrict required alteration.

At the interior, the confines of this structure limit potential alterations. To make the upper level accessible via a ramp or lift, interior or exterior, does not appear to be feasible. The preferred alternative may be to ensure that the uses are the same throughout the front structure, so that the lower, accessible space provides equal character and uses. If so, then the upper level may not be required to be made accessible. Alternatively, the forfeiture of one of the existing toilet room/service volumes, which could be accomplished without adverse historical affect, would allow for the provision of a ramp or lift between the two levels. However, doing so will also of course require an alternative or additional space for a replacement restroom.

Since the one accessible space is necessarily unisex, and since it may be mandatory to provide separate facilities for each gender, then presumably a second accessible restroom is required. If so, the smaller existing restroom should be expanded into the adjoining utility closet spaces, and those spaces relocated or added, or the restroom should be replaced elsewhere with a fully accessible one (or two, since relocation of one could mean the relocation of both).

Building Structure

The building structure consists of the building's concrete foundations and floor slabs (the latter limited to the upper space of the front structure), the buildings timber and wood framed walls, its doors and windows and their openings, its masonry chimney, and its timber framed roofs. Site structures are the two trellised spaces with concrete columns and slabs, timber and wood trellises.

Given the building's age and its geologic and seismic circumstances, it is recommended that a seismic structural assessment of the building be conducted. The relatively small size and simple structure of the building otherwise suggests that its structural deficiencies may be limited and straightforward. Concrete foundations and slabs are not likely to be deficient or, if so, may be altered by standard methods without detriment to the historic structure. The walls and roof are areas that will require more consideration. The walls are likely to be deficient, since of the 27 total bays of exterior wall, each either 7 or 8 feet wide and thus totaling 200 linear feet, 14 of those bays are windows, 2 are doors, and 1 the chimney, so there are only 11 solid exterior wall segments (70 lineal feet) of irregularly located solid walls (plus several solid interior walls with foundations).

Although it has an originally reinforced concrete substructure, the large masonry chimney is another probable structural deficiency.

The roof is also likely deficient, possibly including a lack of connectors between the walls and the roof, as well as the lack or partial lack of horizontal roof diaphragms to integrate and complete load paths between the walls and roofs.

Recommendation: If seismic strengthening is required, the building should allow for relatively straightforward and acceptable structural alterations. Existing solid wall areas may be readily altered, though from the interior side only, as the solid exterior walls are clad in their distinctive, gunited stucco finish, and as interior wood finishes may be readily removed, salvaged and reinstalled. If additional lateral strengthening is required, additional exterior wall bays may be selectively altered, preferably with exposed steel bracing, yet alternatively with solid walls at selected window bays (while necessarily retaining...
and restoring the historic windows at the exterior — see windows under energy recommendations and under material recommendations.

If additional lateral strength is needed at the chimney, it must be added in a concealed fashion. Since a wood burning fireplace is no longer an appropriate use, the flue may provide some allowance for concealed strengthening, even if a gas burning fireplace element is desired. Strengthening of the roof structure has several aspects. If the exposed timbers and truss work require the strengthening of connections in the trusses themselves or to the walls, concealing the new work is highly preferable. If that is not wholly feasible, then new connectors are to be carefully designed for integration between the new and the old without visual disturbance. If the roof itself requires horizontal strength, a new diaphragm is recommended (in conjunction with the roof restoration — see roof under material recommendations).

**MATERIAL RECOMMENDATIONS**

**Landscaping**

As is also the case with the building, the original landscape plan is intact, including most of the trees and plants from the time of the building’s construction. And several very mature trees (oaks and a redwood) remain from before the building’s construction, at which time almost no extant trees were removed (an oak standing directly in front of the building entry way was identified for removal). Since, a redwood that stood along the western footpath at the northwestern corner of the rear terrace has been removed, an oak that stood in the lawn at the front, northeast corner has also been lost, and several trees then planted (the maple at the west side planting bed, and the yucca trees at the west end of the front colonnade) have become mature. Additionally the planting beds that wrap the front structure have a range of mature plants, including originally planted rhododendron, azalea and camellia, with a mix of what appear to be replacement plants and ground covers. The grass lawn across the front of the site also predates the building.

**Landsape Recommendations**

A potent character of the site and of the building on its site is that of a wooded, creek side setting. While the mature, wooded site is character defining, there are simply too many plantings and trees or, perhaps, ones that are simply too mature. The building is not particularly visible, from any perspective. One has to look for it. Not to disparage a mature landscape, but respecting a mature landscape is not always a better alternative than respecting a maturing building. Often, carefully clearing the site, in particular the building perimeter, results in an overall improvement of the quality of an historic property. Thus, in general, it is recommended that the site and its planting be renewed via pruning or selective removal and replacement.

Another factor is that of risk. The stately oaks at both the east and west sides loom over the building, the latter in particular, which has required a substantial prop in the form of a steel pole to support its heavy limbs directly over the building. It is easy to question the stability of this pole support — in an earthquake, for example — and to wonder what the consequences of its failure would be. The question is: which is more valuable, the oak or the building? At the very least, some tree analysis is in order to determine if there are hazards and, if so, to reduce the potential hazard to the building by selective removal of limbs or strengthening its support.

Otherwise, many of the plants in the beds surrounding the front and sides of the building are over mature. This condition crowds the structure, in particular at the front and west side. For example, while the camellias at the front planting bed are original, and are even planted in the line of the wood and concrete posts of the building and colonnade, these should either be removed and replaced, or at least heavily pruned to give the façade some breathing room.

**Sitework**

**Wood bridge and fencing (fig.34)**

The bridge spanning Strawberry Creek to the northwest of the Pelican Building was financed, designed and built as part of the Pelican Building project. It is an all wood bridge, with douglas fir structural members, and cedar, doug fir plus redwood railing members and trim. The bridge is supported at either end by concrete abutments. The wood fencing west of the western pathway was also part of the building project, intended to screen the nearby utility yard and its equipment. Wood species are not identified in the original construction drawing. The “concertina” wire filling the upper, open part of the fence is an obvious alteration.

**Sitework Recommendation 1**

Both bridge and fence are in fair to good condition. Retention is recommended, along with periodic inspection and maintenance.

**Concrete pathways (fig.27)**

A central, concrete path links the building to the front sidewalk at Eshleman Road. The central path, some 7 feet wide and 26 feet in length, is finished smooth. It appears
to be original to the building, as the concrete surface matches that of the adjoining colonnade.

This concrete walk is in good condition (access issues are addressed elsewhere).

Another concrete path, a single concrete slab 9 feet wide and 12 feet in length, forms a landing at the west end of the front colonnade, linking the steps at that end of the colonnade to the western pathway. The eastern end of this concrete slab has heaved, in the process damaging the adjoining, bottom-most colonnade step.

Sitework Recommendation 2
The latter concrete path and the related bottom step are in poor condition. Removal and replacement of the path and repair of the steps are recommended, with a new concrete path replicating the existing concrete finish and color.

Concrete brick mowing strip (fig.30)
Alongside the south edge of the front colonnade, a “mowing strip” of concrete bricks have been placed on grade. Portions of these concrete bricks associated with the steps and walk at the west end of the colonnade are missing or damaged.

Sitework Recommendation 3
Replace missing and damaged bricks as part of walk and step repair and replacement. Alternatively, remove remaining damaged area of bricks back to the extent of sound brickwork, salvaging bricks in good condition; reuse salvaged bricks in sound condition to infill missing or damaged areas at the colonnades eastern end; clean, clean and repair the setting and grouting of sound brick work.

Asphalt pathways (fig.32,37)
Both western and eastern paths are asphalt paved. Their conditions vary across their length. The western path is a primary cross campus access route, so the condition of this path is of greater importance than the eastern path. The western pathway is in fair condition, with areas of loose and missing asphalt. The eastern pathway is more roughly graded and surfaced, though also in fair condition.

Sitework Recommendation 4
Asphalt paths are appropriate to the site, and ongoing asphalt repairs are adequate.

Utility hatches (fig.38)
A number of hatches to underground utilities are located at the northeast corner of the site, directly outside the east wall of the rear wing. While these elements and associated subsurface utilities are on and under the Pelican Building site, they are essentially coincidental to the building, and thus not further addressed herein.

Area drains
A concrete drainage catch basin with metal grate are located at the east side and north end of the front entry walk.

This catch basin and its grate appear to be draining as designed and are in good material condition.

Building Exteriors (fig.39-52)

Cast Stonework (fig.42,46,51)
A number of cast cementitious elements artistically embellish the Pelican Building, including twenty-three pilaster capitals with pelican imagery (originally identified as “pelican column caps”), and two cast plaques that surmount the two exterior doorways, in which “The Pelican” publication's pelican logo is centered and surrounded by dedicatory language. The works were created by the sponsor, Anthony; the architect, Esherick; and the collaborating artist, O’Hanlon.

Together, these cast stone elements are the most character defining features of the building. As they are all well protected from the elements, their overall condition appears to be good.

The original construction drawings include selected details for these cast stone elements, yet within which there is no indication of mechanical anchors.

Building Exterior Recommendation 1
Retain and conserve. Yet, as there is no evidence of mechanical anchors at these heavy, overhead elements, it is recommended that the stability of these elements be evaluated and, if necessary, corrected by the addition of concealed anchors.

Windows (fig.16,46)
Original building windows are relatively large, painted industrial steel units with multiple lites and an inset, operable awning. Typical window units are rectangular, true-divided, and full-height (baseboard to ceiling), with unique units in the gabled ends of the front structure:

- At the lower floor level of the front structure and rear wing — thus corresponding to a taller wall — window units are 6 lites x 5 lites (wxh), with a 4 lite x 1 lite awning, and of which there are 8 such units. Operable awning units are equipped with bronze
window latches at interior.

- At the upper floor level of the front structure, the window units are less tall by 1 lite, thus 6 x 4 lites, of which there are 4 units, each again with a 1 x 4 lite awning centered in the row of lites below the uppermost.

- At the west end of the front structure, a 7 lite by 5 lite window with awning is centered in the wall, with a 7 x 2 lite fixed unit within the gabled wall above, its upper lites correspondingly sloped. A similar set of windows is positioned in the east end of the front structure, though the lower unit is again 1 lite shorter, thus 7 x 4 lite.

Though the window steel and glazing are intact, overall window conditions are poor, with failed glazing compounds and paint, and with obviously poor thermal qualities both as a result of the condition of the units and of the numerous, single-paned glass lites.

**Building Exterior Recommendation 2**

That the primary materials of these windows are intact and repairable, and given the importance of the windows to the building's architecture, their replacement, even in-kind, is not recommended. Yet, the windows require substantial restoration, including:

- Abatement and removal of glazing compound and glazing
- Stripping, repair and refinishing of all steel, including operable sash and hardware
- Resetting of existing glazing and/or replacement with new

The windows may require alteration for the purpose of meeting current energy goals and requirements. Possible alternatives to do so include:

- In order to fully meet energy goals and requirements: repairing and selectively replacing existing window glazing, plus replacing the operable awning units with new steel sashes with insulating glass, plus fitting window inserts at the interiors of the remaining fixed units.
- In order to incrementally meet energy goals: reglazing the windows with laminated glass lites to provide improved energy.

**Window Treatments** (fig.46)

Though window treatments (shades, blinds, etc.) are specifically interior features, given the quantity and size of windows on this building, window treatments are an important part of the window assemblies, as they are highly visible from the exterior and, thus, affect the building’s appearance from both outside and inside.

At present, window treatments are blinds with broad vertical blades, alternatively brown on one side and white on the other, and surface mounted aluminum tracks. The color and type of the existing blinds, including their tracks, are not a good fit for the building, as they do not allow windows to be fully exposed, and as their color attempts yet fails to complement the building exterior.

Originally, the windows were outfitted in several ways:

- Wood blinds (described as “satin fir”) were employed at all of the south windows, and at the west windows of the main building.
- Draperies were originally used at the west windows in the rear wing.

Aside from these descriptions, no details are known about these treatments. Also per these descriptions, the north and east facing windows apparently had no treatments.

The blinds are in fair condition. One of their characteristics is that they do not clear the window opening when open, as they stack widely at the jamb, and thus diminish the strong symmetrical quality of each window unit. Another characteristic of these blinds is that, facing outward, they are white, which is a stark contrast to the muted and dark structure.

**Building Exterior Recommendation 3**

The existing blinds are a poor choice for this building, both in terms of operation and appearance. The original wood blinds, whether horizontal or vertical, were an appropriate choice for this largely wooden building. Wood blinds — or at least wood-like blinds that also more fully open — are recommended to replace the existing.

**Exterior Woodwork**

**Timbering and Framing**

Exposed timbers (used herein, any wood member of nominal 3 inches or greater) and framing (wood members less than nominal 3 inches) are prominently employed to express the post-and-beam structural frame of the building:

- Vertical 3x12 redwood timbers for exterior pilasters at each column line, including building corners.
- Horizontal 3x12 redwood timber header beams running continuously around the building exterior, with projecting ends at corners.
- Another set of members (girders), these identified as douglas fir, atop the header course at longitudinal wall, again with projecting ends to create a stacked, trellis-like structural form.
- Stacked thereon, 6x10 sloped rafter tails, extending the top chords of the roof trusses, with shaped ends.
- Finally, stacked thereon, 4x6 doug fir purlins equally spaced and carrying 2x6 doug fir tongue and groove roof deck boards.
- 2x redwood fascia boards, continuous at roof eaves.
- 2x6 redwood door jambs
- At entry door bays, additional 2x10 redwood vertical and horizontal casing to frame door openings and plaques.
- At entry canopy, front and rear colonnades, stacked horizontal timbers to create trellises, gabled at the entry roof and flat at the colonnades.

Metal hardware is also associated with the timbering and framing, including exposed anchor bolts and washers and, at the trusses, gusset plates at truss connections and at entry roof rafters.

Additional redwood elements at exterior:
- 2x6 redwood window sills
- 4x10 cedar timber bench at rear patio, with built-up wood support blocks

The wood is a mix of redwood and douglas fir. Though there is little difference between their appearance at this juncture, the doug fir is used at all structural elements, including decking, and the redwood for finish work, exterior and interior.

Several special colors were utilized in the original design, including:
- Blue staining at the continuous wood blocking where the top of walls meet the roof
- Blue painting at the exposed ends of roof purlins
- Yellow staining at the underside of the roof decking, inside and out.

Building Exterior Recommendation 4
Where protected by overhangs, exterior wood is generally in good condition. Where so, there is no particular treatment recommendations other than a general cleaning with vacuums and soft-bristle brushes, and possible rinsing with low-pressure water spray.

At the bottoms of exterior walls, where wood members are exposed to direct weather and sunlight, as well as to landscape watering, selected wood members have faded to gray. While this is a natural weathering color, and faded areas do not show evidence of physical deterioration, such weathering is unsightly relative to the natural dark brown color. A possible treatment recommendation at these faded areas of wood is to apply a stain and sealer to refurbish the wood and reapply some darkening to better match the existing dark brown wood color.

The worst wood conditions are at rafter and beam tails, which extend beyond the roof eave and are directly exposed to weather. In several cases, the tails appear to be in poor condition, which means that, in addition to unsightly weathering, the most exposed parts of these members are deteriorating.

Building Exterior Recommendation 5

Recommended treatments include the removal of deteriorated wood and its repair with wood patches or, if severe, with wood dutchman (i.e., matching wood parts). Presumably, the original quality of the wood will mean that extensive patching will not be required, though a detailed inspection is recommended in order to make that determination. Such inspection and repair work would best accompany an overall building repair program that includes roofing inspection, repair and/or replacement. In conjunction with a roof project, in order to protect the exposed tails of rafters for the long run, it is additionally recommended to add copper flashing atop each of the exposed rafter and beam tails.

Stucco Wall Cladding

Exterior walls are essentially composed of three significant material assemblies: steel window units, wood work, and stucco. The latter clads solid wall areas as well as narrow wall aprons below window sills. It is identified as 1 inch thick cement plaster over 1/2 inch plywood.

This is a traditional stucco assembly, built up in 3 layers, though the finish layer is further identified as “gunite” — i.e., sprayed. It is this sprayed-on treatment that results in the modulated, integrally colored finish. It is an excellent finish and obviously well done, as it remains in very good material condition.

Building Exterior Recommendation 6

Recommended stucco treatments are limited to a general cleaning with hand held vacuums and low pressure water spray. One further treatment alternative to consider, albeit hesitantly and only after detailed consideration, is the application of a sacrificial, anti-graffiti coating. Though the Pelican Building has not suffered graffiti, it is not a simple matter of overpainting to restore the integrally covered finish, so sacrificial protection may be in order.

Concrete Work

Cast concrete columns (figs.39,44,45,50) support the front entry roof, and both front and rear colonnades. These sonotube columns, with their spiral pour patterns, are distinctively modern features at the building exterior, and which tie the building to the place and time of its creation. They appear to be in good condition.
The base of the building is a poured-in-place concrete structure, whether a foundation stem wall, the wall forming the edge of a floor slab, or a retaining wall (figs. 41, 47).

The main, lower floor of the building is a wood frame floor with a crawl space and a concrete stem wall around the perimeter. The upper floor area is a raised floor slab with foundation walls at the perimeter. The front colonnade and the rear terrace are concrete slabs on grade, also with retaining walls where grade differences occur, including an upturned set of retaining walls at the east end of the front colonnade (which one enclosed a built-in bench). And the raised planting bed is also supported by a concrete retaining wall.

The concrete appears to be in generally good condition. Some minor cracking is evident in walls as well as slabs, though mostly in the latter. The only definitive crack in any wall is in that of the raised planting bed wall. But exposed slabs are cracked. Unfortunately, the original construction did not add more control joints on every column centerline in the front colonnade slab, as a crack has formed at every centerline where there are no joints. Yet, these cracks are minor.

The rear terrace slab is topped with an aggregate concrete finish. This decorative and interesting topping slab has some very minor cracking, but is otherwise in good condition.

The landing outside the front door is flanked on either side by a strip of aggregate concrete. The smooth finished landing slab slopes slightly to the door threshold. This landing has been modified with an inset pad of concrete which slopes directly to the door threshold. Some mastic also remains on the original slab, which appears to have been placed there to anchor a sign or another piece of equipment. As a result of these alterations, the original landing slab is visibly in poor condition, though materially good.

**Building Exterior Recommendation 7**

Recommended treatment of the exposed concrete work is to generally clean with medium pressure water or other appropriate media, and to mechanically patch moderate cracking with portland cement patching mortar. Additionally, as portions of the concrete structure are concealed, structural analysis (in conjunction with overall building seismic analysis) is recommended. At the front door landing, removal of the mastic residue should be undertaken by mechanical or chemical means.

**Roofing**

The original and existing roofing is sloped, mission-style clay tile, consisting of pan and cover tiles with roof ridge and hip tiles, and with cover tiles closing the eave at sloped roof edges. The tile type is identified in drawings as “Cordova” from the California manufacturer Gladding-McBean. The specifications identify the tile color as “kiln run red.” Copper nails and wires were specified for the setting of the original roof tiles.

The existing roofing tiles are in fair condition, with no evidence of roof leaks, though roofing is selectively in poor condition where there are missing and damaged tiles.

**Building Exterior Recommendation 8**

Generally, the age of the roof, and that there are no present roof leaks, suggests that the roof requires selective tile repairs. However, there are several other roof related conditions that take precedent.

Long term roof repairs call for additional work to the repair and selective replacement of roofing tiles. Such work calls for the removal of the tiles, the installation of a new waterproof membrane over sound roof sheathing, and the reinstallation of the tile work with seismic ties. Seismic work typically requires the strengthening of roof structures. This roof will easily accommodate shear diaphragms in the plane of the roof, requiring the removal and replacement of roofing and the addition of shear plywood and connectors at the roof (plus the new waterproofing membrane).

Roofing also has important energy-related issues, and which should be considered in conjunction with the overall analysis of energy requirements. In this case, since the roof deck is architecturally exposed at the ceilings of interior spaces, the provision of additional insulation at the roof is preferably accommodated above the roof deck. Doing so will call for the installation of a rigid board insulation, and which will build the plane of the roof up from the current and original roof plane. So that the additional roof depth is not carried to and exposed at the roof edge, insulation should be added only above the conditioned space with a step down to the original roof plane at the roof eaves.

As required for selective replacement, new “Cordova” tile in a “kiln run red” mix is still available via Gladding McBean.

**Roof Drainage**

Roof drainage assemblies consist of gutters, roof leaders and downspouts. The gutters are 6 in., 16 oz. half round copper with a single bead on the outside edge. Gutters do not terminate at the roof end, but extend for 12 inches or so. Roof leaders are 3 inch diameter copper running exposed from the gutter back to the wall, with 3 inch diameter copper downspouts running concealed.
within the walls. There are 4 leader and downspout locations.

Copper roof drainage assemblies appear to be in fair condition. At the north facing wall at the rear terrace, a section of gutter is heavily damaged from an adjacent tree limb, thus in poor condition. Detailed copper conditions are not known.

Building Exterior Recommendation 9

Copper roof drainage components are important to the building’s character, so it is recommended that the existing work be retained and repaired where required. As part of any roofing work, it is also recommended that copper be inspected in detail to determine detailed conditions and repair requirements. Selective repair and replacement is at least in order at the damaged gutter section. Repair are also likely at soldered corner joints.

Wood Entry Doors (fig.42-43)

Front and rear doors are solid flush wood doors of indeterminate finish material (perhaps mahogany). Original doors were also solid, flush wood, though no wood species was originally noted. The rear door is a 3 foot wide x 7 foot high single door with a wood veneer finish, and which appears to be a replacement. The original front pair of doors, 5 foot x 7 foot overall, have definitively been replaced with an unequal pair to make the entry accessible. Original door hardware also does not appear to remain, including thresholds. The original doors operated with floor hinges, giving credence to the probability that the existing doors are not original. Also, original finish hardware was identified as bronze, whereas most existing is bright metal. Overall, the doors are in fair-good material condition, and fair visual condition.

Building Exterior Recommendation 10

The extant doors largely fulfill the original intention of having solid, flush, natural finish wood doors inside and out. The existing doors and their hardware are in working order and appear to meet access requirements. Therefore, retention and maintenance is recommended. In the event that changes are made to these doors, whether replacement or repair, the replacement of hardware with bronze metals is strongly recommended, as the bright metal finishes are inappropriate to this structure.

Building Interiors (fig.53-75)

Interior Woodwork

Architecturally, many of the Pelican Building’s exterior characteristics are carried into the building interior. Windows (addressed above) are again a predominant feature. The interior is “woody,” with exposed wood structure and intensive use of wood finishes. Interior woodwork includes:

- 4x12 redwood timber pilasters at exterior walls at each column line (matching exterior)
- 2x6 redwood window sills (integral with exterior)
- Redwood casings and trim at doors and windows
- 1x6 redwood tongue & groove wall finish boards, vertical
- Horizontal 3x12 redwood timber header beams spanning each bay (matching exterior)
- Continuous, horizontal 3x12 douglas fir girders atop the header trim at exterior walls (matching exterior)
- Continuous face of 4x6 doug fir purlins at top of interior walls (stained blue)
- Exposed doug fir roof trusses with 4x6 doug fir roof purlins above
- Exposed 2x6 doug fir roof decking (stained yellow)
- Walnut fireplace mantel with incised walnut face plaque
- Wood (and glass) partition wall
- 2x3 wood handrails with blocking
- Built-in wood cabinets (2) at upper level of front structure, doug fir
- Adjustable shelves at rear wing, doug fir

All of these wood elements, materials and finishes are original to the building. All original interior wood work was identified to be sprayed with a lacquer finish.

Originally, there were no things secured to interior walls. Since, a great many things have accumulated inside this building, including many things attached to the walls in particular, from furniture components to signage, electrical wiring, controls, etc. Too many things, to the extent that it is hard to identify what is appropriate to be affixed to the walls. Overall, the number of attached elements adds up to a poor interior condition at wood finishes.

Upper and relatively inaccessible interior areas and wood finishes are in good condition.

Certain areas of woodwork have concentrated deterioration due to exposure, moisture, and adjacent use. Thus, window sills, door and window casings, and wall areas adjacent to floors are in fair-to-poor condition.

The partition at the west end of the lower, front office area is in fair-to-poor condition.

Building Interior Recommendation 1

Remove many of the existing elements secured to the interior walls; signage, wiring, conduits, pins, screws, etc.

Preservation standards direct that it is inappropriate to attach things to historic elements. This is an applicable
standard for the interior of the Pelican Building, yet understanding that it cannot be completely abided by. The framed covers from *The California Pelican* that line several of the walls are appropriate. Many campus and regulatory signs are also required. But electrical and telecom wiring and controls should be minimally attached [concealment is recommended], and no furniture should be secured to walls. Bulletin boards with a small number of reversible anchors should be used to consolidate signage and messages.

Clean interior woodwork, including an overall, light sanding and fiber-bristle brushing

Selectively repair damaged areas (scraps, scuffs, divots, etc.) via manual, light sanding and minor filling

Selectively fill holes resulting from removed anchors

Sand more heavily at areas of greater deterioration: wood window sills and casings; water and solvent stained areas directly above the floor; walls alongside steps

Patch unused openings and holes to match the existing wood

Reapply a coat of clear lacquer finish to all interior woodwork

Refurbish built-in cabinetry at upper level office (clean, refinish, repair hardware and glazing)

Remove shelving (see Use recommendations)

The partition at the main office area should be refinished, including removal of all attached elements, stripping of wood, minor wood repairs, and overall refinishing. Partition glazing should also be cleaned or replaced with new. For privacy, glazing may be replaced with translucent or opaque material. (Partition door and frame may also require replacement — see below).

**Interior Doors**

There are five existing interior wood doors: 1 at each of the restrooms, 1 at each of the service closets, and 1 at the wood and glass partition in the main office area.

Original restroom doors were specified as 2 foot 4 inch wide by 7 foot tall flush, birch. The door at the toilet room to the north is original, with its white oak threshold and its bronze hardware, including floor pivot, push plate and pulls. The door at the south toilet room is a replacement, including modified frame and replacement hardware for the purpose of making that toilet room accessible.

The 2 service closet doors were and are blind doors, with wood boards matching the walls on their faces. The janitor’s closet door is the more original, as the original closet in the upper space was converted to house telephone equipment rather than a work sink, so has been modified with a vent in the face of the door.

The current hollow core door and frame at the office partition is not original, though doors were originally specific at the partition (2 doors were specified, yet only the one opening was shown in the original plans).

Door conditions: Good at toilet rooms and janitor’s closet; fair at telephone closet (due to added vent); poor (design) at partition

**Building Interior Recommendation 2**

Retain, clean, selectively repair, and refinish original doors and hardware. If required, replace hardware components to match or be compatible with the original hardware, and specifically with oil rubbed bronze finishes.

Replace existing door and frame at partition, with new, flush birch door finished to replicate original door finish, and with new hardware also similar to original at closet and toilet room. Replacement door should fit the existing opening. Alternatively, eliminate this door if program uses allow.

**Brick Masonry**

A unique interior feature of the building is the original fireplace and chimney in the rear wing, which defines the character of the space as library and living room-like. The brick work of the chimney, again reflecting the exterior, is exposed within the room. The reddish brick is set in a running bond with light mortar joints, and with a single sailor course at the top. An inset panel is centered above the mantel, its brick in a herringbone pattern. A projecting brick hearth is raised slightly above the floor level. A framed painting (portrait of Anthony) and a metal memorial plaque are mounted on the brick chimney.

The brick chimney, fireplace and hearth are in good material condition.

**Building Interior Recommendation 3**

No specific repairs are required. Face brick should be generally cleaned, including light scrubbing and rinsing. Portrait painting and metal plaque are appropriate features in this location and should be retained.

**Interior Metalwork**

Wood truss members are joined with exposed, steel plates on each side of each truss.

Wrought iron fireplace accessories are mounted to the face of the brick fireplace.

**Building Interior Recommendation 4**

Retain and generally clean existing metalwork. Repainting should not be required.
Flooring

Original flooring was specified as 6 inch square vinyl (Robbins “Terratile”) with a black vinyl base throughout the office areas and the janitor’s closet. Original flooring at the toilet rooms was mosaic tile with mosaic tile base (and walls — see below).

Resilient sheet flooring exists throughout the building, with black vinyl bases at wood walls, and integrally coved bases with metal termination bars at toilet rooms. The flooring at the toilet rooms is a slightly different material than at the office areas.

The original flooring may remain below the existing. At the north toilet room, damaged sheet flooring at the doorway reveals the original blue mosaic tile below.

Overall, sheet flooring is in sound condition. The existing blue material appears to have been selected to relate to the original floor colors. Damage is limited to the interior of the north rest room. Associated metal thresholds and strips are clear aluminum, whereas original metals, including the nosings at steps, was bronze.

Building Interior Recommendation 5

Retain flooring in good condition. When replacement is in order, investigate the original flooring and replace with compatible vinyl tiles. If no evidence of original flooring, then replace the existing as needed. The pale blue colors at the interior appear to be originally intended. Therefore, the continued use of blue colors is recommended. At the office areas, associated metals should be replaced with bronze.

If north toilet room is to remain, then replace existing flooring with new to match existing. If north toilet room undergoes replacement or substantial alteration, then remove existing flooring and replace with a ceramic tile similar to the original.

Tile Wall Finishes

Original, 2 inch square, pale blue ceramic mosaic tile is applied, full height, at the walls of the restrooms.

These tiles are in fair-good condition.

Building Interior Recommendation 6

Retain, clean and selectively repair with matching materials, as required. If replacement is required due to alterations, then replacement with a similar tile is in order.

Plumbing Fixtures

Selected original plumbing fixtures remain, including the drinking fountain and the fixtures in the North Toilet Room and the Janitor’s Closet.

The conditions of this range of fixtures is fair.

Building Interior Recommendation 7

Retain the original fixtures where feasible to do so.

Miscellaneous Interior Equipment

Various equipment, including ceiling fans, fire extinguishers, strobes, exit signs, pull boxes, thermostats, etc., have been added to the interior space.

As noted elsewhere, the array of equipment excessively clutters the inside of this building.

Building Interior Recommendation 8

Where feasible, selectively remove miscellaneous equipment and, where required, replace with new that is installed semi-concealed.

BUILDING & ENERGY SYSTEMS RECOMMENDATIONS

Heating

Situated directly atop steam tunnels, the original and current building is heated via integrated, cast iron, steam baseboards. These steam baseboards are simple yet distinctive, commercial radiators (American Standard “Radiantrim”) of a mid-20th century design.

Most of these radiators appear to be functioning, though some may not be.

Building System Recommendation 1

Retention and reuse of the distinctive baseboard radiators is recommended. While largely functional, as part of any overall rehabilitation project, the system should be inspected and repaired as needed.

Lighting

At the exterior, existing lighting original to the building is limited to the “fibreglas” lensed incandescent lighting in the ceiling of the entry canopy. An original light pole/standard may also have existed at the concrete path leading to the steps that enter the trellised walkway at the front of the building, though only a light fixture base remains in this location (the electrical plan says to “see specification” for this fixture — receipt of copies of original specs are pending). Another light standard is indicated alongside the steps to the rear terrace, though there is currently no evidence of any such fixture. And an original wall mounted light was located at the door to the rear terrace. Whatever that fixture was, it has been replaced with a contemporary light, switch and conduit (which is not currently operable).

A range of original lighting fixtures remain throughout
interior office areas. In each office area, fluorescent tube lights were built into the bottoms of trusses with concealing trim work and plexiglas lenses. In the front office spaces, additional built-in fluorescent fixtures, spanning between the trusses and boxed in with wood sides and plexi lenses, provide both upward and downward illumination. In the upper office area at the east end of the front structure, pendant fixtures with teardrop-shaped globes hang in five of the six roof/ceiling bays of that space.

While many of these original interior fixtures remain, none are intact or in good condition. The built-in fluorescents at the interior are only semi-functional, having been variously altered and otherwise deteriorated. It is not known whether any of the several plastic lenses that remain are original.

Building System Recommendation 2

The original fixture at the ceiling of the front entry should be retained and restored, including the restoration or in-kind replacement of the lenses, and with replacement or alternative energy efficient lamping.

At the rear door, the current fixture and its wiring should be removed and a replacement, wall mounted fixture of a period style (if pending specs don't identify, then the style of this fixture may be cued off the original interior pendants). Although this original fixture was indicated to be installed at the wood fascia centered on the door, presuming the stucco has been altered where the current fixture is located, then a new fixture should replace the existing in order to conceal any stucco damage or alteration. And as discussed below, replacement and new wiring should be concealed along with recessed switches.

Lighting standards may be installed as required by the campus, with preference given to original locations.

The built-in fluorescent lighting at and associated with the truss work is a distinctive original design feature. While the present character of these fixtures and their light is poor, reuse of this application is recommended, either with restored/reconstructed fixtures, or with some form of replacement lighting: for example, lighting tracks and track fixtures to replace the fluorescents; or a combination thereof. The point of this recommendation is that the current built-in lighting locations should be retained and continued, yet with appropriate new lamping to best meet future programmatic needs.

The five teardrop pendants should be restored with energy efficient lamps and repaired globes to match existing as closely as possible.

Wiring and Controls

Wiring and controls for the original building were concealed behind trims, atop beams, etc. Receptacle and switch cover plates were originally brass, a range of which remain.

Miscellaneous lighting, emergency power and telecom wiring and controls have been added, typically via surface mounting at the building interior.

Building System Recommendation 3

All surface mounted wiring should be removed and replaced in concealed locations, including via the removal and reinstallation of wood casing, pilasters, and trim. Surface mounted receptacles, switches and controls should also be replaced with recessed per the original. Existing cover plates should be retained, and new cover plates should match the restored original.
Fig.17: Pelican Illustration
From 1903 Blue and Gold, by Gustave Verbeek

Fig.18: Pelican Stained Glass Window Design
From 1903 Blue and Gold, by Raymond Carter

Fig.19: Earle C. Anthony, c1903
From 1904 Blue and Gold

Fig.20: Earle C. Anthony, c1940s
My mamma and my papa, and my good old grannie dear,
    They packed away my bottle and my toys,
    And they came with me to Berkeley to watch over me for fear
Lest I might associate with naughty boys.
    For I'm Earle C. Anthony
    Biggest child in all U. C.

I sought and found a frat. where the men are tailor-made;
    My papa's wealth sufficed to get me in;
(Except with Jimmie Sutton, its "rep." is quite immense;)
But my infant graces didn't seem to win.
    I'm Earle C. Anthony,
    And I move in the swellest society.

I have an automobile which is strictly up-to-date;
    I have a "choo choo" bicycle to ride;
    But whoever hopes to get a nickel from me will require
A cork-screw and a suction pump beside.
    I'm Earle C. Anthony
    "Tightest" man in the U. of C.

My jaw is double-jointed and my throat can never tire;
    My tongue is like the clapper of a bell;
    I talk of other people's faults and of my virtues great,
Till frequently I am told to go to—well,
    Anyway, I'm Earle C. Anthony,
    Orator of class of Naughty-Three.

With a staff of willing workers to do the hardest work
    I am getting out a famous B. and G.
    And it's joy to know, while "slamming" profs and students
right and left,
That no one can possibly "slam" me.
    For I'm Earle C. Anthony
    Editor of the B. & G.
    Hip! Hip! Hooray for me!

Fig. 21: Poem Lampooning Earle Anthony
from 1903 Blue and Gold (unknown author)
Fig. 22: Pelican Illustration
Sketch Rendering – B. R. Maybeck - J. Esherick, Archs. (no date) (UCB CED)

Fig. 23: Pelican Building
Sketch Rendering and Plan – J. Escherick, Arch. (UCB CED)
Fig. 24: Pelican Building
Original Design Schemes – Sketch Plans (north is up) – J. Esherick, Arch. (UCB CED)
Fig. 25: Pelican Building
Original Design Schemes – Sketch Elevations – J. Esherick, Arch. (UCB CED)
PHOTOGRAPHS – EXISTING SITE

Fig.26: Pelican Building Site – Front Yard and West Side from southwest
(MH–2010)

Fig.27: Pelican Building Site – Front Yard, Central Entry Path and Front Collonade
(MH–2011)
Fig.28a-b: Pelican Building – The Pelican sculpture in East Front Yard
(MH–2011)

Fig.29: Front Planting Bed
(MH–2010)

Fig.30: Concrete Brick Mowing Strip along edge of Front Colonnade – showing damaged and missing bricks
(MH–2011)

Fig.31: Retaining Walls in East Front Yard with missing original bench
(MH–2011)
Fig. 32: West Walk looking north (MH–2010)

Fig. 33: West Walk and Footbridge looking south (MH–2010)

Fig. 34: West Footbridge and Wood Fence looking northwest (MH–2010)
Fig. 35: Rear Terrace at creekside – looking east (MH–2010)

Fig. 36: East Walk and Yard – looking north (MH–2010)

Fig. 37: Rear (northeast) corner of site – looking north (MH–2010)

Fig. 38: Rear (northeast) corner of site – looking south (MH–2010)
Fig. 39: View of Former Art Gallery from Fron Colonnade – looking west  

(MH–2010)

Fig. 40: Pelican Building Front and West Side – looking northeast  

(MH–2010)
Fig. 41: Pelican Building Front and West Side – looking northeast (MH–2010)

Fig. 42: Front Entry Door with cast stone plaque (MH–2010)

Fig. 43: Rear Entry Door with cast stone plaque (MH–2010)
Fig.44: Front Entry
(MH–2010)

Fig.45: Front Colonnade – looking east
(MH–2010)

Fig.46: East Side Elevation
(MH–2010)
Fig. 47: East Side at rear (northeast) corner (MH–2010)

Fig. 48: Woodwork at Southeast corner (MH–2010)

Fig. 49: North Elevations (MH–2010)
Fig. 50: Rear Terrace and Colonnade  
(MH–2010)

Fig. 51: Pelican Column Capital  
(MH–2011)

Fig. 52: Brick and Stucco  
(MH–2011)
Fig. 57: Front Entry Door  
(MH–2010)

Fig. 58: Interior Wood Work  
(MH–2010)

Fig. 59: Upper Office Space, looking north (east footbridge outside)  
(MH–2010)
Fig. 60: Original Toilet Room Door and Drinking Fountain (MH–2010)

Fig. 61: Wood finished walls with blind door at Janitor (MH–2010)

Fig. 62: Wood Partition in Main Office Space (MH–2010)

Fig. 63: Built-in Cabinet at Upper Office space (MH–2010)
Fig. 64: Upper Office Space with clutter – Note original Egg-shaped Light Fixture (MH–2010)

Fig. 65: Meeting Room/Library with equipment clutter (MH–2010)

Fig. 66: Surface Mounted Equipment (MH–2010)

Fig. 67: Surface Mounted Wiring and Controls (MH–2010)

Fig. 68: Fireplace Mantel with Anthony portrait and plaque (MH–2010)

Fig. 69: Fireplace Hearth with clutter (MH–2010)
Fig. 70: Hole in Upper West Wall at Upper Office Space (MH–2010)

Fig. 71: Original Baseboard Radiator & Flush Electrical Outlet (MH–2010)

Fig. 72: Deteriorated Wood Window Sill (MH–2010)

Fig. 73: Oak Threshold & Flooring at North Toilet Room (MH–2010)

Fig. 74: Window and Window Treatment (MH–2010)

Fig. 75: Furniture attached to walls at Upper Office Space (MH–2010)